The Moon is not volcanically active at present, therefore, we rely on data from lunar samples, remote sensing, and numerical modeling to understand past lunar volcanism. The role of different volatile species in propelling lunar magma ascent and eruption remains unclear. We adapt a terrestrial magma ascent model for lunar magma ascent, considering different compositions of picritic magmas and various abundances of H-2, H2O, and CO (measured and estimated) for these magmas. We also conduct a sensitivity analysis to investigate the relationship between selected input parameters (pre-eruptive pressure, temperature, conduit radius, and volatile content) and given outputs (exit gas volume fraction, velocity, pressure, and mass eruption rate). We find that, for the model simulations containing H2O and CO, CO was more significant than H2O in driving lunar magma ascent, for the range of volatile contents considered here. For the simulations containing H-2 and CO, H-2 had a similar or slightly greater control than CO on magma ascent dynamics. Our results showed that initial H-2 and CO content has a strong control on exit velocity and pressure, two factors that strongly influence the formation of an eruption plume, pyroclast ejection, and overall deposit morphology. Our results highlight the importance of (a) quantifying and determining the origin of CO, and (b) understanding the abundance of different H-species present within the lunar mantle. Quantifying the role of volatiles in driving lunar volcanism provides an important link between the interior volatile content of the Moon and the formation of volcanic deposits on the lunar surface.
Volcanic activity on Mars peaked during the Noachian and Hesperian periods but has continued since then in isolated locales. Elysium Planitia hosts numerous young, fissure-fed flood lavas with ages ranging from approximately 500 to 2.5 million years (Ma). We present evidence for a fine-grained unit that is atypical of aeolian deposits in the region and may be the youngest volcanic deposit yet documented on Mars. The unit has a low albedo, high thermal inertia, includes high-calcium pyroxene-rich material, and is distributed symmetrically around a segment of the Cerberus Fossae fissure system in Elysium Planitia. This deposit is superficially similar to features interpreted as pyroclastic deposits on the Moon and Mercury. Unlike previously documented lava flows in Elysium Planitia, this feature is morphologically consistent with a fissure-fed pyroclastic deposit, mantling the surrounding lava flows with a thickness on the order of tens of cm over most of the deposit and a volume of 1.1-2.8 x 10(7) m(3). Thickness and volume estimates are consistent with tephra deposits on Earth. Stratigraphic relationships indicate a relative age younger than the surrounding volcanic plains and the Zunil impact crater (similar to 0.1-1 Ma), with crater counting suggesting that the deposit has an absolute model age of 53 +/- 7 to 210 +/- 12 ka. This young age implies that if this deposit is volcanic then the Cerberus Fossae region may not be extinct and that Mars may still be volcanically active. This interpretation is consistent with the identification of seismicity in this region by the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) lander, and has additional implications for astrobiology.