共检索到 2

The recent evidence of water in the lunar crater Cabeus from the LCROSS mission (Colaprete et al., 2010) provides confirmation of a valuable resource on the lunar surface. To understand this resource and the impact it can have on future exploration, further information is needed on the distribution and availability of the water ice. The Lunar Advanced Volatile Analysis (LAVA) subsystem is a part of the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload, designed to provide ground truth to the volatile distribution near the permanently shadowed regions on the lunar surface. The payload is designed to drill and extract a regolith core sample, heat the regolith to drive off the volatiles, and identify and quantify the volatile resources. The LAVA subsystem is specifically responsible for processing and analyzing the volatile gas sample from the lunar regolith sample. The main objective of this paper is to provide insight into the operations and hardware for volatile analysis developed and deployed at the 2012 RESOLVE Field Test on the slopes of Mauna Kea. The vision of employing Commercial Off the Shelf (COTS) and modified COTS hardware to lower the cost for mission-enabling field tests will be highlighted. This paper will discuss how the LAVA subsystem hardware supported several high level RESOLVE mission objectives to demonstrate the challenging lunar mission concept proposed. Published by Elsevier Ltd. on behalf of COSPAR.

期刊论文 2015-05-15 DOI: 10.1016/j.asr.2014.11.006 ISSN: 0273-1177

The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 degrees C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 degrees C and determining the composition of volatiles released as a function of temperature.

期刊论文 2012-01-01 ISSN: 1095-323X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页