Pile penetration in soft ground involves complex mechanisms, including significant alterations in the soil state surrounding the pile, which influence the pile negative skin friction (NSF) over time. However, the pile penetration process is often excluded from finite element analysis. This paper investigates the impact of pile penetration on the generation of NSF and dragload. A stable node-based smoothed particle finite element method (SNS-PFEM) framework is introduced for two-dimensional axisymmetric conditions and coupled consolidation, incorporating the ANICREEP model of soft soil with a modified cutting-plane algorithm. A field case study with penetration process is simulated to verify the numerical model's performance, followed by a parametric analysis on the effect of penetration rate on NSF during consolidation. Results indicate that without the pile penetration process in NSF analysis can result in an unsafely low estimation of NSF and dragload magnitudes. The penetration rate affects dragload only at the initial consolidation stage. As consolidation progresses, dragload converges to nearly the same magnitude across different rates. Additionally, current design methods inadequately predict the beta value (where beta is an empirical factor correlating vertical effective stress of soil with the pile skin friction) and its time dependency, for which a new empirical formula for the time-dependent beta value is proposed and successfully applied to other field cases.
Plastic-bonded granular materials (PBM) are widely used in industrial sectors, including building construction, abrasive applications, and defense applications such as plastic-bonded explosives. The mechanical behavior of PBM is highly nonlinear, irreversible, rate dependent, and temperature sensitive governed by various micromechanical attributions such as grain crushing and binder damage. This paper presents a thermodynamically consistent, microstructure-informed constitutive model to capture these characteristic behaviors of PBM. Key features of the model include a breakage internal variable to upscale the grain-scale information to the continuum level and to predict grain size evolution under mechanical loading. In addition, a damage internal state variable is introduced to account for the damage, deterioration, and debonding of the binder matrix upon loading. Temperature is taken as a fundamental external state variable to handle non-isothermal loading paths. The proposed model is able to capture with good accuracy several important aspects of the mechanical properties of PBM, such as pressure-dependent elasticity, pressure-dependent yield strength, brittle-to-ductile transition, temperature dependency, and rate dependency in the post-yielding regime. The model is validated against multiple published datasets obtained from confined and unconfined compression tests, covering various PBM compositions, confining pressures, temperatures, and strain rates.
An advanced constitutive framework for unsaturated soils, the UTUH model, is proposed in this paper, which considers the joint effect of time, suction and overconsolidation within the framework of sub-loading surface plasticity. A reference line, namely the instantaneously normal compression line (INCLs) for unsaturated soils, is introduced from a conceptual framework drawn from constant rates of strain test results to determine creep time and overconsolidation states of unsaturated soils. Subsequently, an isotropic elasto-viscoplastic constitutive model for unsaturated soils is produced by combining viscous deformation with mechanical and hydraulic deformation through overconsolidation parameter. Net stress, suction and time are adopted as fundamental constitutive variables and time-dependent loading collapse yield surface is derived to characterize the relationship between yield stress, suction, and time. Then, an extension to a triaxial stress state is built in the space of mean effective stress, suction, deviator stress and time variable. The hardening of yield surface and sub-loading surface is controlled by viscoplastic volumetric strain and unified hardening parameter. The performance of the proposed UTUH model is addressed through four numerical studies, and the proposed model is validated against experimental data from the literature.
Current overstress typed elastic viscoplastic models fall short in describing some time-dependent mechanical behaviors of anisotropically overconsolidated clays comprehensively. This paper presents a rigorous fractional order anisotropic elastic viscoplastic two-surface model for such clays, based on the principles of fractional consistency viscoplasticity and bounding or subloading surface theory. First, a three-dimensional formulation of isotach viscosity is proposed and integrated into two rate-dependent surfaces, i.e., the loading surface and yield surface. Then, by incorporating the stress-fractional operator of the rate-dependent loading surface into isotropic, progressive, and rotational hardening rules, the incremental form of stress-strain-time model with a fractional order viscoplastic flow rule is developed by meeting the consistency condition on the loading surface. Accordingly, the proposed model cannot only maintain the predictive capabilities of a classic bounding surface model but also describe the general features of the time-dependent behavior under various stress conditions. Validation and versatility of the proposed fractional order elastic viscoplastic model are successfully evaluated against constant strain-rate and stress relaxation tests on anisotropically overconsolidated resedimented Boston Blue clay.
This paper presents a novel elastic-viscoplastic constitutive model for reproducing the time-dependent behaviour of coarse-grained soil considering particle breakage, by integrating the Unified Hardening (UH) model, the elastic-viscoplastic (EVP) model and the overstress theory. The relationship between the degree of particle breakage and the loading rate is established, and the state variables associated with the critical state of coarsegrained soil are derived to jointly consider both time and particle breakage. A new three-dimensional elasticviscoplastic constitutive model is then constructed through combining the one-dimensional viscoplastic hardening parameter with a secondary consolidation coefficient considering particle breakage. The proposed model requires 19 parameters and it can well describe the influence of time-dependency and particle breakage to the shear, dilatancy, and compression behaviours of coarse-grained soil with various confining pressures or initial void ratios. Comparisons between the model predictions and experimental data are employed to validate the capability of the proposed model to replicate the time-dependent behaviour of coarse-grained soil.