共检索到 11

Durum wheat cultivation is increasingly threatened by viral diseases worldwide. Soil-borne cereal mosaic virus (SBCMV) and wheat spindle streak mosaic virus (WSSMV) cause significant crop losses in Europe. These viruses are transmitted through a soil-inhabiting vector, the plasmodiophoromycota Polymyxa graminis Led. There are very few methods available to eradicate P. graminis, whose resting spores survive in infested soil for decades, but they are either too expensive or not environmentally friendly. Therefore, it is crucial to develop resistant wheat varieties to mitigate the damage. For this purpose, more than 200 durum wheat genotypes, mostly landraces, were selected from the Global Durum Wheat Panel germplasm collection. Then, an experiment was conducted in a semi-controlled environment: the genotypes were sown in pots containing soil infested by P. graminis carrying SBCMV and WSSMV and maintained through the winter period. In early spring, visual assessment of viral symptomatology was performed. Subsequently, the viral loads of the two viruses in leaf tissues were determined through qRT-PCR analysis. The tested genotypes exhibited different responses to the two viruses: SBCMV showed very diversified viral loads among genotypes, whereas WSSMV infected all genotypes. We identified 23 genotypes, with low viral loads of both viruses and reduced symptoms, that could be of particular interest for breeders aiming at new resistant durum wheat varieties. A pilot GWAS allowed to identify genomic regions putatively associated to resistance to SBCMV or WSSMV, as well as possible candidate genes involved in these traits.

期刊论文 2025-06-01 DOI: 10.1016/j.cpb.2025.100485

Calcium-dependent protein kinase (CDPK) is an important mediator for Ca2 + signal recognition and transduction, playing a crucial role in plant stress response. Previous studies have shown that PcCDPK5 may be involved in the response of patchouli to p-hydroxybenzoic acid (p-HBA) stress. In this study, we further found that the subcellular localization of PcCDPK5 protein is in the cytoplasm, and its gene expression is closely related to continuous cropping (CC) and p-HBA stress. Under p-HBA stress, silencing the PcCDPK5 homologous gene in Nicotiana tabacum leads to decreased antioxidant enzyme activity and increased malondialdehyde (MDA) content, significantly accumulating reactive oxygen species (ROS) and affecting normal plant growth. On the contrary, overexpression of PcCDPK5 can effectively alleviate the damage caused by p-HBA stress to plant bodies. Through this research, the function of PcCDPK5 in response to p-HBA stress has been preliminarily analyzed, laying a theoretical foundation for alleviating CC obstacles in patchouli.

期刊论文 2025-02-01 DOI: 10.1016/j.ecoenv.2025.117807 ISSN: 0147-6513

The novel concept of the review is a focus on the organisms living in the sea ice and what mechanisms they have developed for their existence. The review describes the physical environment of the sea ice and the microorganisms living there as microalgae, bacteria, virus, fungi, meio- and macrofauna where they inhabit the brine channels and exposed to low temperatures as down to -25 degrees C and high salinities-up to 300. Nutrients, O2, CO2, pH, light, and UV are also identified as stressors regarding the metabolism of the microorganisms. It is argued that sea ice must be recognized as an extreme environment as based on records of very high or very low concentrations or intensities of the stressors that living organisms in the ice are exposed to and able to endure. Each taxonomic group of organisms in the sea ice are dealt with in detail in terms of the explicit stressors the group is exposed to, and specifically what known mechanisms that the organisms have amended to secure existence and life. These mechanisms are known for some group of organisms as autotrophs, bacteria, meio- and macrofauna but less so for virus and fungi. The review concludes that sea ice is an extreme environment where the stressors vary significantly in both space and time, both in consort and solitary, classifying organisms living there as polyextremophiles and extremophiles. The review relates further to extraterrestrial moons covered with sea ice and these habitats and points toward sea ice on Earth for prospective studies until further technological advances.

期刊论文 2024-12-01 DOI: 10.1007/s00300-024-03296-z ISSN: 0722-4060

Background: The current focus is largely on whole course medical management of coronavirus disease-19 (COVID-19) with real-time polymerase chain reaction (RT-PCR) and radiological features, while the mild cases are usually missed. Thus, combination of multiple diagnostic methods is urgent to understand COVID-19 fully and to monitor the progression of COVID-19. Methods: laboratory variables of 40 mild COVID-19 patients, 30 patients with community-acquired pneumonia (CAP) and 32 healthy individuals were analyzed by principal component analysis (PCA), Kruskal test, Procrustes test, the vegan package in R, CCA package and receiver operating characteristic to investigate the characteristics of the laboratory variables and their relationships in COVID-19. Results: The correlations between the laboratory variables presented a variety of intricate linkages in the COVID-19 group compared with the healthy group and CAP patient group. The prediction probability of the combination of lymphocyte count (LY), eosinophil (EO) and platelets (PLT) was 0.847, 0.854 for the combination of lactate (LDH), creatine kinase isoenzyme (CK-MB), and C-reactive protein (CRP), 0.740 for the combination of EO, white blood cell count (WBC) and neutrophil count (NEUT) and 0.872 for the combination of CK-MB and P. Conclusions: The correlations between the laboratory variables in the COVID-19 group could be a unique characteristic showing promise as a method for COVID-19 prediction and monitoring progression of COVID-19 infection.

期刊论文 2024-11-01 DOI: http://dx.doi.org/10.21037/apm-21-2006 ISSN: 2224-5820

Climate change is rapidly transforming Arctic landscapes where increasing soil temperatures speed up permafrost thaw. This exposes large carbon stocks to microbial decomposition, possibly worsening climate change by releasing more greenhouse gases. Understanding how microbes break down soil carbon, especially under the anaerobic conditions of thawing permafrost, is important to determine future changes. Here, we studied the microbial community dynamics and soil carbon decomposition potential in permafrost and active layer soils under anaerobic laboratory conditions that simulated an Arctic summer thaw. The microbial and viral compositions in the samples were analyzed based on metagenomes, metagenome-assembled genomes, and metagenomic viral contigs (mVCs). Following the thawing of permafrost, there was a notable shift in microbial community structure, with fermentative Firmicutes and Bacteroidota taking over from Actinobacteria and Proteobacteria over the 60-day incubation period. The increase in iron and sulfate-reducing microbes had a significant role in limiting methane production from thawed permafrost, underscoring the competition within microbial communities. We explored the growth strategies of microbial communities and found that slow growth was the major strategy in both the active layer and permafrost. Our findings challenge the assumption that fast-growing microbes mainly respond to environmental changes like permafrost thaw. Instead, they indicate a common strategy of slow growth among microbial communities, likely due to the thermodynamic constraints of soil substrates and electron acceptors, and the need for microbes to adjust to post-thaw conditions. The mVCs harbored a wide range of auxiliary metabolic genes that may support cell protection from ice formation in virus-infected cells.IMPORTANCE As the Arctic warms, thawing permafrost unlocks carbon, potentially accelerating climate change by releasing greenhouse gases. Our research delves into the underlying biogeochemical processes likely mediated by the soil microbial community in response to the wet and anaerobic conditions, akin to an Arctic summer thaw. We observed a significant shift in the microbial community post-thaw, with fermentative bacteria like Firmicutes and Bacteroidota taking over and switching to different fermentation pathways. The dominance of iron and sulfate-reducing bacteria likely constrained methane production in the thawing permafrost. Slow-growing microbes outweighed fast-growing ones, even after thaw, upending the expectation that rapid microbial responses to dominate after permafrost thaws. This research highlights the nuanced and complex interactions within Arctic soil microbial communities and underscores the challenges in predicting microbial response to environmental change. As the Arctic warms, thawing permafrost unlocks carbon, potentially accelerating climate change by releasing greenhouse gases. Our research delves into the underlying biogeochemical processes likely mediated by the soil microbial community in response to the wet and anaerobic conditions, akin to an Arctic summer thaw. We observed a significant shift in the microbial community post-thaw, with fermentative bacteria like Firmicutes and Bacteroidota taking over and switching to different fermentation pathways. The dominance of iron and sulfate-reducing bacteria likely constrained methane production in the thawing permafrost. Slow-growing microbes outweighed fast-growing ones, even after thaw, upending the expectation that rapid microbial responses to dominate after permafrost thaws. This research highlights the nuanced and complex interactions within Arctic soil microbial communities and underscores the challenges in predicting microbial response to environmental change.

期刊论文 2024-07-30 DOI: 10.1128/msphere.00259-24

As an important medicinal plant, Panax notoginseng often suffers from various abiotic and biotic stresses during its growth, such as drought, heavy metals, fungi, bacteria and viruses. In this study, the symptom and physiological parameters of cucumber mosaic virus (CMV)-infected P. notoginseng were analyzed and the RNA-seq was performed. The results showed that CMV infection affected the photosynthesis of P. notoginseng, caused serious oxidative damage to P. notoginseng and increased the activity of several antioxidant enzymes. Results of transcriptome analysis and corresponding verification showed that CMV infection changed the expression of genes related to plant defense and promoted the synthesis of P. notoginseng saponins to a certain extent, which may be defensive ways of P. notoginseng against CMV infection. Furthermore, pretreatment plants with saponins reduced the accumulation of CMV. Thus, our results provide new insights into the role of saponins in P. notoginseng response to virus infection.

期刊论文 2024-03-01 DOI: 10.1016/j.virol.2024.109983 ISSN: 0042-6822

Increasing soil salinization has led to severe reductions in plant yield and quality, and investigating the molecular mechanism of salt stress response is therefore an urgent priority. In this study, we systematically analyzed the response of cotton roots to salt stress using single-cell transcriptomics technology; 56 281 high-quality cells were obtained from 5-day-old lateral root tips of Gossypium arboreum under natural growth conditions and different salt treatments. Ten cell types with an array of novel marker genes were identified and confirmed by in situ RNA hybridization, and pseudotime analysis of some specific cell types revealed their potential differentiation trajectories. Prominent changes in cell numbers under salt stress were observed for outer epidermal and inner endodermal cells, which were significantly enriched in response to stress, amide biosynthetic process, glutathione metabolism, and glycolysis/gluconeogenesis. Analysis of differentially expressed genes identified in multiple comparisons revealed other functional aggregations concentrated on plant-type primary cell wall biogenesis, defense response, phenylpropanoid biosynthesis, and metabolic pathways. Some candidate differentially expressed genes encoding transcription factors or associated with plant hormones also responsive to salt stress were identified, and the function of Ga03G2153, annotated as auxin-responsive GH3.6, was confirmed by virus-induced gene silencing. The GaGH3.6-silenced plants showed a severe stress-susceptible phenotype, and physiological and biochemical measurements indicated that they suffered more significant oxidative damage. These results suggest that GaGH3.6 might participate in cotton salt tolerance by regulating redox processes. We thus construct a transcriptional atlas of salt-stressed cotton roots at single-cell resolution, enabling us to explore cellular heterogeneity and differentiation trajectories and providing valuable insights into the molecular mechanisms that underlie plant stress tolerance.

期刊论文 2024-02-12 DOI: 10.1016/j.xplc.2023.100740 ISSN: 2590-3462

Attacks of plant-parasitic nematodes can seriously affect grapevine yield and quality, also due to synergistic damages caused by the co-presence of nematodes and viruses. A survey was carried out in vineyards from a D.O.C.G. area of Veneto region, Italy, in order to better understand the relationship between grapevine plants and presence of phytonematodes. Most concerns were raised by detection of species as Mesocriconema xenoplax and Xiphinema index, this latter as the vector of grapevine fanleaf virus (GFLV), the most economically important nepovirus in vineyards. Some individuals of Pratylenchus vulnus were also found. Numerous predaceous nematodes as Mononchida were found within several soil samples. Mononchida play an important role in contrasting the spread of other nematodes, including plant-parasitic nematodes. During the survey, other non-plant-parasitic nematodes as Dorylaimina and Rhabditida were homogeneusly distribuited among samples.

期刊论文 2024-01-01 DOI: 10.19263/REDIA-107.24.15 ISSN: 0370-4327

This review examines natural pests, competitors of the Heracleum sosnowsky. Special attention is paid to the role of mutualism in the invasiveness of hogweed. the parsnip yellow spot virus, larvae of the weevil ( Lixus iridis (Olivier, 1807)), agromyzid flies ( Phytomyza pastinacae (Hendel, 1923)), umbrella moth ( Epermenia chaerophyllella (Goeze, 1783)), scoops ( Dasypolia temple (Thunberg, 1792)), depressariids ( Depressaria radiella (Goeze, 1783)), celery fly ( Euleia heraclei (Linnaeus, 1758)), lamellate beetles ( Oxythyrea funesta (Poda, 1761)), caterpillars of the Kamchatka Swallowtail ( Papiliomachaon (Linnaeus, 1758)) significantly damaged Heracleum sosnowsky. Thrips vulgatissimus (Haliday, 1836) feeds on the sap, while Lixus iridis eat leaves and stems of the above mentioned hogweed. Phoma complanate (Tode) (= Calophoma complanate) is a phytopathogenic fungi that damage Heracleum sosnowsky. Powdery mildew, ascochitosis and cylindrosporosis are most common fungal diseases of the giant hogweed. Shellfish farming and livestock grazing curb the spread of hogweed. Due to the lack of competition in the environment, the importance of its artificial creation is discussed. The fast-growing perennial grasses create dense turf that prevents germinating of hogweed seeds. Poapratensis L., Alopecuruspratensis L., Bromus inermis Leyss., Festuca rubra L., Phlumpratense L., Loliumperenne L., Helianthus tuberosus L., and Galega orientalis Lam. are among them. Replacement crops, such as Picea abies (L.) Karst. and Pinus sylvestris L., can compete in vacant lots and abandoned lands. The success of the hogweed populations introduction depends on the presence of pollinators, the spread of its seeds by animals and humans; symbiosis with fungi and bacteria. The possibility of limiting the spread of hogweed through the absence of species that improve its adaptability is discussed. It was concluded that biological control agents are promising to use and additional studies is needed to reduce the number of Heracleum sosnowsky and eliminate negative consequences for the environment.

期刊论文 2024-01-01 DOI: 10.25750/1995-4301-2024-4-006-014 ISSN: 1995-4301

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan city of China in late December 2019 and identified as a novel coronavirus. Due to its contagious nature, the virus spreads rapidly and causes coronavirus disease 2019 (COVID-19). The global tally of COVID-19 was 28 million in early September 2020. The fears and stress associated with SARS-CoV-2 has demolished the socio-economic status worldwide. Researchers are trying to identify treatments, especially antiviral drugs and/or vaccines, that could potentially control the viral spread and manage the ongoing unprecedented global crisis. To date, more than 300 clinical trials have been conducted on various antiviral drugs, and immunomodulators are being evaluated at various stages of COVID-19. This review aims to collect and summarize a list of drugs used to treat COVID-19, including dexamethasone, chloroquine, hydroxychloroquine, lopinavir/ritonavir, favipiravir, remdesivir, tociluzimab, nitazoxanide and ivermectin. However, some of these drugs are not effective and their use has been suspended by WHO. (C) 2020 The Authors. Published by Elsevier Ltd.

期刊论文 2023-10-01 DOI: http://dx.doi.org/10.1016/j.nmni.2020.100770
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页