共检索到 2

Lignin fiber is a type of green reinforcing material that can effectively enhance the physical and mechanical properties of sandy soil when mixed into it. In this study, the changes in the dynamic elastic modulus and damping ratio of lignin-fiber-reinforced sandy soil were investigated through vibratory triaxial tests at different lignin fiber content (FC), perimeter pressures and consolidation ratios. The research results showed that FC has a stronger effect on the dynamic elastic modulus and damping ratio at the same cyclic dynamic stress ratio (CSR); with the increase in FC, the dynamic elastic modulus and damping ratio increase and then decrease, showing a pattern of change of the law. Moreover, perimeter pressure has a positive effect on the dynamic elastic modulus, which can be increased by 81.22-130.60 %, while the effect on the damping ratio is slight. The increase in consolidation ratio increases the dynamic elastic modulus by 10.89-30.86 % and the damping ratio by 38.24-100.44 %. Based on the Shen Zhujiang dynamic model, a modified model considering the effect of lignin fiber content FC was established, and the modified model was experimentally verified to have a broader application scope with a maximum error of 5.36 %. This study provides a theoretical basis for the dynamic analysis and engineering applications of lignin-fiber-reinforced sandy soil.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04592 ISSN: 2214-5095

In order to gain a more accurate understanding of the dynamic characteristics of soil, vibration triaxial tests were conducted on representative sand and clay samples from the Beijing area. The study investigated the influence of varying loading frequencies, cyclic stress ratios, and confining pressures on soil strength and liquefaction resistance, while also analyzing changes in shear modulus and damping ratio. The dynamic shear modulus of both sand and clay decreases with increasing shear strain, with higher confining pressures resulting in larger shear moduli. For sand, the damping ratio decreases as shear strain increases; however, for clay it initially increases before decreasing. Overall, clay exhibits a larger dynamic shear modulus but smaller damping ratio compared to sand. The number of cycles experienced by both sand and clay samples decreases with increasing confining pressure or deviational stress. As loading frequency increases, the number of cycles gradually rises for sand samples but first increases then decreases for clay samples. The damping ratio of sand gradually declines with an increase in cycle count while that of clay remains relatively stable. The variations observed in shear modulus and damping ratio are influenced by factors such as loading frequency, confining pressure, and stress.

期刊论文 2025-05-21 DOI: 10.3311/PPci.38869 ISSN: 0553-6626
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页