The excellent grounding performance of tracked mining vehicles (TMVs) is a crucial foundation for the normal operation of the entire deep-sea polymetallic nodule mining system. Based on the weak mechanical properties of deep-sea fluidized sediments, this study conducted model tests to deeply analyze the pressure-sinkage relationship curve characteristics and the soil failure process under the vertical action of the TMV track plates. It identified the influence of soil water content on the failure mode and compaction degree and established a new segmented pressure-sinkage model, verifying its accuracy. The test results showed that the width of the track plates and the water content of the sediments had a significant impact on the pressure-sinkage relationship curve, while the sinkage speed had little effect. The bearing capacity of the sediment was an inherent property of the soil, independent of the track plate width and sinkage speed, and decreased with increasing water content. By combining the changes in soil strength and the movement characteristics of soil particles under vertical load, the pressure-sinkage model was divided into the compaction stage, elastic stage, elastoplastic stage, and plastic stage. Based on the experimental results under various conditions, a predictive model for track sinkage depth that considers sediment water content and track plate width was developed. The findings of this study can provide a scientific theoretical basis for the design optimization of parameters such as vehicle weight and track dimensions, promoting the development of deep-sea polymetallic nodule mining.
Soil and water conservation structures are vital for environmental resilience but present maintenance challenges due to their wide distribution and remote locations. To tackle these issues, a method using unmanned aerial vehicles (UAVs) combined with 360 degree photography was developed. UAVs captured images that were processed into panoramic and 3D models, enabling precise inspections of structural damage. These models were integrated into the disaster environment review and update (DER&U) rating system, enhanced by a fuzzy inference classification mechanism for improved damage estimation. Additionally, a management platform was created to boost overall efficiency and provide decision-making support for relevant authorities. The UAV-assisted inspection method demonstrated promising results, though certain limitations were also noted.
This paper reviews works on the dynamic analysis of flexible and rigid pavements under moving vehicles on the basis of continuum-based plane strain models and linear theories. The purpose of this review is to provide information about the existing works on the subject, critically discuss them and make suggestions for further research. The reviewed papers are presented on the basis of the various models for pavement-vehicle systems and the various methods for dynamically analyzing these systems. Flexible pavements are modeled by a homogeneous or layered half-plane with isotropic or anisotropic and linear elastic, viscoelastic or poroelastic material behavior. Rigid pavements are modeled by a beam or plate on a homogeneous or layered half-plane with material properties like the ones for flexible pavements. The vehicles are modeled as concentrated or distributed over a finite area loads moving with constant or time dependent speed. The above pavement-vehicle models are dynamically analyzed by analytical, analytical/numerical or purely numerical methods working in the time or frequency domain. Representative examples are presented to illustrate the models and methods of analysis, demonstrate their merits and assess the effects of the various parameters on pavement response. The paper closes with conclusions and suggestions for further research in the area. The significance of this research effort has to do with the presentation of the existing literature on the subject in a critical and easy to understand way with the aid of representative examples and the identification of new research areas.
Indonesia and Malaysia produce the most palm oil in the world. The world's palm oil industry doubled in 1960-1990 and then increased steadily until 2020. However, the industry faces problems and challenges as a cause of environmental damage. Fertilizers and pesticides used in oil palm plantations and their processing waste are suspected of contaminating the environment with heavy metals. Unmanned Aerial Vehicles (UAVs) have become more widely used for environmental monitoring, particularly as a technology for tracking heavy metals on agricultural land in recent years. Previous studies claim several advantages of using this technology, such as fast operation and low cost. This study presents the state-of-the-art available UAV platforms for heavy metal tracking in the agricultural industry. Recent applications focus primarily on hyperspectral sensing and photogrammetric technique. In addition, the prospects for UAV technology to track heavy metal pollution in the palm oil industry are also analysed.
Permanently shadowed regions (PSRs) at the lunar poles pique scientific interest on account of their cold trapping of volatiles that is highly relevant in the current scope of lunar exploration. Interiors of PSRs are largely unknown due to the challenging illumination conditions. In this letter, we describe a method for synthesizing images at PSRs based on the knowledge of incident solar illumination geometry and local topography that reflects light into PSRs.
Water ice and other volatile compounds may be present on the Moon's surface within permanently shadowed regions (PSRs) near the lunar poles. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar PSRs is identified as a Strategic Knowledge Gap (SKG) for NASA's human exploration program, projected to visit the lunar south pole in the next decade. These polar volatile deposits are also scientifically interesting, having potential to reveal important information about the delivery of water to the Earth-Moon system.
NASA is planning to send astronauts to the moon and then establish sustainable lunar exploration during the 21st Century under the Artemis program. The lunar south pole target site will need ground transportation to transport materials such as lunar ice from one location to another. This paper explores an alternative transportation system that is based on earth aerial tramways, which involves a chassis, wheels, drivetrain, and elevated cables with supporting structure. The wear of regolith lunar dust and the difficulties in traversing the uneven lunar terrain are reduced. Also, the speed and size of the cargo being transported should be superior to the lunar roving vehicle. By implementing a drivetrain system powered by solar energy, long term power generation and vehicle operation is achieved in the south polar region, which remains in sunlight at near horizontal incidence during the lunar cycle. Because of the extreme high and low temperatures of the moon, strength of materials that vary with temperature must be considered. The internal components of the vehicle and the chassis are protected by a lightweight shell. On earth, heat generated by electric charging and use of batteries can be removed by convection with the surrounding air. The lunar atmosphere presents a unique problem of possessing virtually no heat transfer through convection, while solar radiation will add or remove heat more extremely than earthbased conditions. A thermal control system is designed to manage the battery waste heat, utilizing optical solar reflectors and an internal conductive cooling system.
The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.
Trails created by off-road vehicles (ORV) in boreal lowlands are known to cause local impacts, such as denuded vegetation, soil erosion, and permafrost thaw, but impacts on stream and watershed processes are less certain. In Wrangell-St. Elias National Park and Preserve (WRST), Alaska, ORV trails have caused local resource damage in intermountain lowlands with permafrost soils and abundant wetlands and there is a need to know whether these impacts are more extensive. Comparison of aerial photography from 1957, 1981, and 2004 coupled with ground surveys in 2009 reveal an increase in trail length and number and show an upslope expansion of a trail system around points of stream channel initiation. We hypothesized that these impacts could also cause premature initiation and headward expansion of channels because of lowered soil resistance and greater runoff accumulation as trails migrate upslope. Soil monitoring showed earlier and deeper thaw of the active layer in and adjacent to trails compared to reference sites. Several rainfall-runoff events during the summer of 2009 showed increased and sustained flow accumulation below trail crossings and channel shear forces sufficient to cause headward erosion of silt and peat soils. These observations of trail evolution relative to stream and wetland crossings together with process studies suggest that ORV trails are altering watershed processes. These changes in watershed processes appear to result in increasing drainage density and may also alter downstream flow regimes, water quality, and aquatic habitat. Addressing local land-use disturbances in boreal and arctic parklands with permafrost soils, such as WRST, where responses to climate change may be causing concurrent shifts in watershed processes, represents an important challenge facing resource managers.
We follow Paper I with predictions of how gas leaking through the lunar surface could influence the regolith, as might be observed via optical transient lunar phenomena (TLPs) and related effects. We touch on several processes, but concentrate on low and high flow rate extremes, which are perhaps the most likely. We model explosive outgassing for the smallest gas overpressure at the regolith base that releases the regolith plug above it. This disturbance's timescale and affected area are consistent with observed TLPs; we also discuss other effects. For slow flow, escape through the regolith is prolonged by low diffusivity. Water, found recently in deep magma samples, is unique among candidate volatiles, capable of freezing between the regolith base and surface, especially near the lunar poles. For major outgassing sites, we consider the possible accumulation of water ice. Over geological time, ice accumulation can evolve downward through the regolith. Depending on gases additional to water, regolith diffusivity might be suppressed chemically, blocking seepage and forcing the ice zone to expand to larger areas, up to km(2) scales, again, particularly at high latitudes. We propose an empirical path forward, wherein current and forthcoming technologies provide controlled, sensitive probes of outgassing. The optical transient/outgassing connection, addressed via Earth-based remote sensing, suggests imaging and/or spectroscopy, but aspects of lunar outgassing might be more covert, as indicated above. TLPs betray some outgassing, but does outgassing necessarily produce TLPs? We also suggest more intrusive techniques from radar to in situ probes. Understanding lunar volatiles seems promising in terms of resource exploitation for human exploration of the Moon and beyond, and offers interesting scientific goals in its own right. Many of these approaches should be practiced in a pristine lunar atmosphere, before significant confusing signals likely to be produced upon humans returning to the Moon.