Study area: Urumqi Glacier No.1 Catchment in central Asia. Study focus: Chemical weathering at the basin scale is important process for understanding the feedback mechanism of the carbon cycle and climate change. This study mainly used the actual sampling data in 2013, 2014, and 2016, and the first collection from the literature in same catchment to analyze the seasonal and interannual characteristics of meltwater runoff, as well as cation denudation rate (CDR). New hydrological insights for the study region: The dominant ions of meltwater runoff are Ca2 +, HCO3- , and SO42-, which are mainly derived from calcite dissolution, feldspar weathering and sulfide oxidation. Meltwater runoff at Urumqi Glacier No.1 has higher concentrations of Ca2+ and lower concentrations of HCO3- than that from glaciers in Asia. Compared to 2006 and 2007, cation concentrations increased in 2013 and 2014, while SO42- concentration decreased. The daily ion concentration has seasonality and exhibits a negative relationship with discharge. Daily CDR is positively related to discharge and temperature. Annual CDR values range from 12.34 to 19.04 t/ km2/yr in 2013, 2014, and 2016, which are 1-1.7 times higher than those in 2006 and 2007 and higher than some glaciers in Asia. These results indicate that chemical weathering rate in the Urumqi Glacier No.1 catchment has increased with climate warming, and it is stronger than that of some glaciers in the Tibetan Plateau and surroundings.
Study area: Urumqi Glacier No.1 Catchment in central Asia. Study focus: Chemical weathering at the basin scale is important process for understanding the feedback mechanism of the carbon cycle and climate change. This study mainly used the actual sampling data in 2013, 2014, and 2016, and the first collection from the literature in same catchment to analyze the seasonal and interannual characteristics of meltwater runoff, as well as cation denudation rate (CDR). New hydrological insights for the study region: The dominant ions of meltwater runoff are Ca2 +, HCO3- , and SO42-, which are mainly derived from calcite dissolution, feldspar weathering and sulfide oxidation. Meltwater runoff at Urumqi Glacier No.1 has higher concentrations of Ca2+ and lower concentrations of HCO3- than that from glaciers in Asia. Compared to 2006 and 2007, cation concentrations increased in 2013 and 2014, while SO42- concentration decreased. The daily ion concentration has seasonality and exhibits a negative relationship with discharge. Daily CDR is positively related to discharge and temperature. Annual CDR values range from 12.34 to 19.04 t/ km2/yr in 2013, 2014, and 2016, which are 1-1.7 times higher than those in 2006 and 2007 and higher than some glaciers in Asia. These results indicate that chemical weathering rate in the Urumqi Glacier No.1 catchment has increased with climate warming, and it is stronger than that of some glaciers in the Tibetan Plateau and surroundings.
Extreme heat events in the summer of 2022 were observed in Eurasia, North America and China. Glaciers are a unique indicator of climate change, and the European Alps experienced substantial glacier mass loss as a result of the conditions in 2022, which prompted a wide range of community concerns. However, relevant findings for glaciers in China have not been currently reported. Here, we document the response of Urumqi Glacier No. 1 in the eastern Tien Shan to the extreme heat observed in 2022 based on in situ measurements that span more than 60 years. In 2022, Urumqi Glacier No. 1 exhibited the second largest annual mass loss on record, and the summer mass balance was the most negative on record. The hottest summer on record and relatively lower solid precipitation ratio contributed to the exceptional mass losses at Urumqi Glacier No. 1 in 2022, demonstrating the significant influence of heatwaves on extreme glacier melt in China.
Extreme heat events in the summer of 2022 were observed in Eurasia, North America and China. Glaciers are a unique indicator of climate change, and the European Alps experienced substantial glacier mass loss as a result of the conditions in 2022, which prompted a wide range of community concerns. However, relevant findings for glaciers in China have not been currently reported. Here, we document the response of Urumqi Glacier No. 1 in the eastern Tien Shan to the extreme heat observed in 2022 based on in situ measurements that span more than 60 years. In 2022, Urumqi Glacier No. 1 exhibited the second largest annual mass loss on record, and the summer mass balance was the most negative on record. The hottest summer on record and relatively lower solid precipitation ratio contributed to the exceptional mass losses at Urumqi Glacier No. 1 in 2022, demonstrating the significant influence of heatwaves on extreme glacier melt in China.
The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far. In the present study, using the snow cover model SNOWPACK, the effect of geotextile cover on the energy and mass balance at the tongue of the Urumqi Glacier No. 1 (Chinese Tien Shan) was simulated between July 12, 2022 and August 31, 2022. The mass changes and the energy fluxes with and without material cover were compared. The results indicated that the geotextile covering reduced glacier ablation by approximately 68% compared to the ablation in the uncovered regions. The high solar reflectivity of the geotextile reduced the net short-wave radiation energy available for the melt by 45%. Thermal insulation of the geotextile reduced the sensible heat flux by 15%. In addition, the wet geotextile exerted a cooling effect through long-wave radiation and negative latent heat flux. This cooling effect reduced the energy available for ablation by 20%. Consequently, only 37% of the energy was used for melting compared to that used in the uncovered regions (67%). Sensitivity experiments revealed that the geotextile cover used at a thickness range of 0.045-0.090 m reduced the ice loss by approximately 68%-72%, and a further increase in the thickness of the geotextile cover led to little improvements. A higher temperature and greater wind speed increased glacier ablation, although their effects were small. When the precipitation was set to zero, it led to a significantly increased melt. Overall, the geotextile effectively protected the glacier tongue from rapid melting, and the observed results have provided inspiration for developing an effective and sustainable approach to protect the glaciers using geotextile cover.
Worldwide examination of glacier change is based on detailed observations from only a small number of glaciers. The ground-based detailed individual glacier monitoring is of strong need and extremely important in both regional and global scales. A long-term integrated multi-level monitoring has been carried out on Urumqi Glacier No. 1 (UG1) at the headwaters of the Urumqi River in the eastern Tianshan Mountains of Central Asia since 1959 by the Tianshan Glaciological Station, Chinese Acamedey of Sciences (CAS), and the glaciological datasets promise to be the best in China. The boundaries of all glacier zones moved up, resulting in a shrunk accumulation area. The stratigraphy features of the snowpack on the glacier were found to be significantly altered by climate warming. Mass balances of UG1 show accelerated mass loss since 1960, which were attributed to three mechanisms. The glacier has been contracting at an accelerated rate since 1962, resulting in a total reduction of 0.37 km(2) or 19.3% from 1962 to 2018. Glacier runoff measured at the UG1 hydrometeoro-logical station demonstrates a significant increase from 1959 to 2018 with a large interannual fluctuation, which is inversely correlated with the glacier's mass balance. This study analyzes on the changes in glacier zones, mass balance, area and length, and streamflow in the nival glacial catchment over the past 60 years. It provides critical insight into the processes and mechanisms of glacier recession in response to climate change. The results are not only representative of those glaciers in the Tianshan mountains, but also for the continental-type throughout the world. The direct observation data form an essential basis for evaluating mountain glacier changes and the impact of glacier shrinkage on water resources in the interior drainage rivers within the vast arid and semi-arid land in northwestern China as well as Central Asia.
The unprecedented COVID-19 outbreak impacted the world in many aspects. Air pollutants were largely reduced in cities worldwide in 2020. Using samples from two snow pits dug separately in 2019 and 2020 in Urumqi Glacier No. 1 (UG1) in the Xinjiang Uygur Autonomous Region (Xinjiang), China, we measured water-stable isotopes, soluble ions, and black and organic carbon (BC and OC). Both carbon types show no significant variations in the snow-pit profiles dated from 2018 through 2020. The deposition of anthropogenically induced soluble ions (K+, Cl-, SO42-, and NO3-) in the snow decreased to 20-40% of their respective concentrations between 2019 and 2020; however, they increased 2- to fourfold from 2018 to 2019. We studied the daily concentrations of SO2 (2019-2020), NO2 (2015-2020), CO (2019-2020), and PM2.5 (2019-2020) measured in the sixteen major cities and towns across Xinjiang. The variabilities in these air pollutants were supposed to illustrate the air quality in the urban area and represent the change in the source area. The NO2 decreased in response to mobility restrictions imposed by local governments, while SO2, CO, and PM2.5 did not consistently correspond. This difference indicates that the restriction measures primarily affected traffic. The increases in chemical species in the snow from 2018 to 2019 and the subsequent decreases from 2019 to 2020 were consistent with the variations in SO2 and NO2 measured in urban air and estimated by MERRA-2 model. Therefore, the pandemic could possibly have an impact on snow chemistry of the Tien-Shan glaciers via reduced traffic and industrial intensity; more evidence would be obtained from ice cores, tree rings, and other archives in the future.
Artificial glacier melt reduction is gaining increasing attention because of rapid glacier retreats and the projected acceleration of future mass losses. However, quantifying the effect of artificial melt reduction on glaciers in China has not been currently reported. Therefore, the case of Urumqi Glacier No.1 (eastern Tien Shan, China) is used to conduct a scientific evaluation of glacier cover efficiency for melt reduction between 24 June and 28 August 2021. By combining two high-resolution digital elevation models derived from terrestrial laser scanning and unmanned aerial vehicles, albedo, and meteorological data, glacier ablation mitigation under three different cover materials was assessed. The results revealed that up to 32% of mass loss was preserved in the protected areas compared with that of the unprotected areas. In contrast to the unprotected glacier surface, the nanofiber material reduced the glacier melt by up to 56%, which was significantly higher than that achieved by geotextiles (29%). This outcome could be attributed to the albedo of the materials and local climate factors. The nanofiber material showed higher albedo than the two geotextiles, dirty snow, clean ice, and dirty ice. Although clean snow had a higher albedo than the other materials, its impact on slowing glacier melt was minor due to the lower snowfall and relatively high air temperature after snowfall in the study area. This indicates that the efficiencies of nanofiber material and geotextiles can be beneficial in high-mountain areas. In general, the results of our study demonstrate that the high potential of glacier cover can help mitigate issues related to regions of higher glacier melt or lacking water resources, as well as tourist attractions.
In this study, energy and mass balance is quantified using an energy balance model to represent the glacier melt of Urumqi Glacier No. 1, Chinese Tian Shan. Based on data from an Automatic Weather Station (4025 m a.s.l) and the mass balance field survey data nearby on the East Branch of the glacier, the COupled Snowpack and Ice surface energy and Mass balance model (COSIMA) was used to derive energy and mass balance simulations during the ablation season of 2018. Results show that the modeled cumulative mass balance (-0.67 +/- 0.03 m w.e.) agrees well with the in-situ measurements (-0.64 +/- 0.16 m w.e.) (r(2) = 0.96) with the relative difference within 5% during the study period. The correlation coefficient between modeled and observed surface temperatures is 0.88 for daily means. The main source of melt energy at the glacier surface is net shortwave radiation (84%) and sensible heat flux (16%). The energy expenditures are from net longwave radiation (55%), heat flux for snow/ice melting (32%), latent heat flux of sublimation and evaporation (7%), and subsurface heat flux (6%). The sensitivity testing of mass balance shows that mass balance is more sensitive to temperature increase and precipitation decrease than temperature decrease and precipitation increase.
Light-absorbing impurities (LAIs) in surface snow and snow pits together with LAIs' concentrations and their impacts on albedo reduction and sequent radiative forcing (RF) have been investigated in the past. Here, we focused on temporal-spatial distributions of LAIs, especially on the albedo reduction and radiative forcing caused by the LAIs in Urumqi Glacier No.1. Various snow samples, including fresh snow, aged snow, and granular ice were collected between 3,770 and 4,105 m a.s.l of Urumqi Glacier No.1 during the snowmelt season of 2015. For the surface snow samples, BC and OC concentrations were 582 and 1,590 ng g(-1), respectively. Mineral dust (MD) concentrations were 110 mu g g(-1). Due to the different ablation status of the glacier surface, LAIs accumulate at the lower altitude of the glacier. The estimation by the Snow, Ice, and Aerosol Radiative (SNICAR) model indicated that BC and MD could reduce the albedo by 12.8 and 10.3% in fresh snow, aged snow by 23.3 and 5.9%, and granular ice by 22.4 and 26.7%, respectively. The RF of MD was higher than that of BC in fresh snow and granular ice, whereas the RF of BC exceeded MD in aged snow. These findings suggested that BC was the main forcing factor in snow melting and dust was the main forcing factor in accelerating glacier melt.