共检索到 67

In situ resource utilization of lunar regolith provides a cost-effective way to construct the lunar base. The melting and solidifying of lunar soil, especially under the vacuum environment on the Moon, are the fundamentals to achieve this. In this paper, lunar regolith simulant was melted and solidified at different temperatures under a vacuum, and the solidified samples' morphology, structure, and mechanical properties were studied. The results indicated that the density, compressive strength, and Vickers hardness of the solidified samples increased with increasing melting temperature. Notably, the sample solidified at 1400 degrees C showed excellent nanohardness and thermal conductivity originating from the denser atomic structure. It was also observed that the melt migrated upward along the container wall under the vacuum and formed a coating layer on the substrate caused by the Marangoni effect. The above results proved the feasibility of employing the solidified lunar regolith as a primary building material for lunar base construction.

期刊论文 2025-08-01 DOI: 10.1111/jace.20566 ISSN: 0002-7820

A series of finite element analyses, conducted on the basis of modified triaxial tests incorporating radial drainage, were carried out to investigate the lateral deformation and stress state characteristics of prefabricated vertical drain (PVD) unit cells under vacuum preloading. The analyses revealed that the inward horizontal strain of the unit cell increases approximately linearly with the vacuum pressure (Pv) but decreases non-linearly with an increase in the initial vertical effective stress (sigma ' v0). The variations in the effective stress ratio, corresponding to the median excess pore water pressure during vacuum preloading of the PVD unit cell, were elucidated in relation to the Pv and sigma ' v0 using the simulation data. Relationships were established between the normalized horizontal strain and normalized effective stress ratio, as well as between the normalized stress ratio and a composite index parameter that quantitatively captures the effects of vacuum pressure, initial effective stress, and subsoil consolidation characteristics. These relationships facilitate the prediction of lateral deformation in PVD-improved grounds subjected to vacuum preloading, utilizing fundamental preloading conditions and soil properties. Finally, the proposed methodology was applied to analyze two field case histories, and its validity was confirmed by the close correspondence between the predicted and measured lateral deformation.

期刊论文 2025-08-01 DOI: 10.1016/j.geotexmem.2025.03.008 ISSN: 0266-1144

Geocells are three-dimensional, interconnected cellular geosynthetics widely used to enhance the overall strength of soils. Their foldable structure can cause variations in pocket shape during installation, depending on the extent of extension. Understanding the impact of these shape variations is essential for optimizing reinforcement efficiency and reducing the associated geocell application costs. The aspect ratio, defined as the ratio of the cell's transverse (welded) axis to the longitudinal (wall summit) axis, is proposed to evaluate the degree of extension of the most commonly utilized honeycomb-shaped geocell. A coupled continuum-discontinuum numerical method was employed to investigate the behavior of honeycomb-shaped geocell reinforced soils across various aspect ratios under confined compressive loading. The simulation results indicate that a geocell with an aspect ratio of 1.0 exhibits optimal reinforcement efficiency, and whereas reinforcement efficiency decreases as the aspect ratio deviates from 1.0 causing pocket geometries to flatten. The superior performance of rounded geocells is attributed to their enhanced ability to promote load-bearing in strong contact subnetworks. This results in denser packing structures, higher contact force anisotropy from a microscopic perspective, and greater confinement capacity against deformation from a macroscopic perspective.

期刊论文 2025-08-01 DOI: 10.1016/j.compgeo.2025.107256 ISSN: 0266-352X

The lunar base establishing is crucial for the long-term deep space exploration. Given the high costs associated with Earth-Moon transportation, in-situ resource utilization (ISRU) has become the most viable approach for lunar construction. This study investigates the sintering behavior of BH-1 lunar regolith simulant (LRS) in a vacuum environment across various temperatures. The sintered samples were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), along with nanoindentation, uniaxial compression, and thermal property tests to evaluate the microstructural, mechanical, and thermal properties. The results show that the sintering temperature significantly affects both the microstructure and mechanical strength of the samples. At a sintering temperature of 1100 degrees C, the compressive strength reached a maximum of 90 MPa. The mineral composition of the sintered samples remains largely unchanged at different sintering temperatures, with the primary differences observed in the XRD peak intensities of the phases. The plagioclase melting first and filling the intergranular pores as a molten liquid phase. The BH-1 LRS exhibited a low coefficient of thermal expansion (CTE) within the temperature range of - 150 degrees C to 150 degrees C, indicating its potential for resisting fatigue damage caused by temperature fluctuations. These findings provide technical support for the in-situ consolidation of lunar regolith and the construction of lunar bases using local resources.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2024.e04132 ISSN: 2214-5095

As a relatively new method, vacuum preloading combined with prefabricated horizontal drains (PHDs) has increasingly been used for the improvement of dredged soil. However, the consolidation process of soil during vacuum preloading, in particular the deformation process of soil around PHDs, has not been fully understood. In this study, particle image velocimetry technology was used to capture the displacement field of dredged soil during vacuum preloading for the first time, to the best of our knowledge. Using the displacement data, strain paths in soil were established to enable a better understanding of the consolidation behavior of soil and the related pore water pressure changes. The effect of clogging on the deformation behavior and the growth of a clogging column around PHD were studied. Finite element analysis was also conducted to further evaluate the effects of the compression index (lambda) and permeability index (ck) on the soil deformation and clogging column. Empirical equations were proposed to characterize the clogging column and to estimate the consolidation time, serving as references for the analytical model that incorporates time-dependent variations in the clogging column for soil consolidation under vacuum preloading using PHDs.

期刊论文 2025-07-01 DOI: 10.1061/JGGEFK.GTENG-13077 ISSN: 1090-0241

The lateral cyclic bearing characteristics of pile foundations in coastal soft soil treated by vacuum preloading method (VPM) are not well understood. To investigate, static lateral cyclic loading tests were conducted to assess the impact of treatment durations and sealing conditions on pile performance. Results indicated that vacuum preloading significantly improved soil properties, with undrained shear strength (S-u) increasing by up to 36.5 times, especially in shallow layers. Longer treatment durations boosted the ultimate lateral bearing capacity by up to 125%, although the effect decreased with depth, suggesting an optimal duration. Sealing conditions had minimal impact on capacity but affected S-u distribution and pile behaviour. Analysis of p-y curves revealed that longer durations improved soil resistance in shallow layers, while shorter durations provided consistent resistance across depths. Sealed conditions enhanced displacement capacity. The API specification predicted soil resistance accurately for lateral displacements under 0.1D but showed errors for larger displacements. These findings emphasise the need for optimising VPM parameters to enhance pile-soil interaction and lateral cyclic performance. The study offers guidance for applying VPM in soft soil foundation engineering and balancing performance with cost efficiency.

期刊论文 2025-06-17 DOI: 10.1680/jphmg.25.00010 ISSN: 1346-213X

A large-strain model was developed to study the consolidation behavior of soil deposits improved with prefabricated vertical drains and subjected to surcharge and vacuum preloading. The smear effect resulting from the installation of drains was incorporated in the model by taking the average values of permeability and compressibility in the smear zone. The dependence of permeability and compressibility on void ratio and the effects of non-Darcian flow at low hydraulic gradients were also incorporated in the model. The creep effect was also taken into account for secondary consolidation of soft soil deposits. The model was applied to two different embankments located at Suvarnabhumi International Airport, Thailand, and Leneghan, Australia. It was observed that the creep effect led to an additional settlement of 12%-17% after the primary consolidation phase. The study further demonstrated that creep settlements increased with the non-Darcian effect. The difference between surface settlement results with and without the creep effect increased from about 12% to 15% when the non-Darcian parameter (n) increased from 1 to 1.6. However, beyond a threshold value of n >= 1.6, the influence of non-Darcian flow on creep settlement diminished. The value of average and actual effective stresses increased by about 13% and 17%, respectively, when the value of n increased from 1 to 2. However, the impact of n on effective stresses became negligible for values of n >= 2.5. The rate of consolidation decreased approximately by about four times when the permeability ratio ((k) over tilde (u)/(k) over tilde (s)) increased from 1 to 5.

期刊论文 2025-06-01 DOI: 10.1061/IJGNAI.GMENG-10597 ISSN: 1532-3641

Here, we investigate how the oxidation state of Cr adsorbed to solid surfaces can change during XPS analysis. Experiments are performed to test how Fe(III) solid surfaces, aqueous chemistry, and XPS vacuum conditions affected the measured Cr oxidation state. While oxidized Cr(VI) adsorbs onto nonreducing solid surfaces in the experiments, reduced Cr(III) is primarily measured by XPS. The reduction of adsorbed Cr(VI) occurs under the vacuum conditions of the XPS as CO2, O-2, and H2O are removed from the sample surface. These results suggest that Fe(III) solid surfaces exposed to high-vacuum conditions and/or X-rays can cause the reduction of Cr or other elements with a high redox potential contained on that surface.

期刊论文 2025-06-01 DOI: 10.1002/sia.7400 ISSN: 0142-2421

To determine the effects of root volume density on the mechanical behaviour of sand, drained and undrained triaxial compression tests were conducted on sand with root volume densities of 0.8%, 1.2%, 1.6%, 2.0%, and 2.4% under different confining pressures. Higher root content formed a denser and more uniform root network in the soil, enabling more roots to mobilize tensile stress, share external loads, and limit volumetric deformation. This enhanced the root-soil composite strength, reduced volumetric strain under drained conditions, and decreased excess pore water pressure under undrained conditions. The roots made a more pronounced contribution to the soil shear strength under lower confining pressures and undrained conditions. Specifically, with increasing confining pressure, the increment in the inherent soil strength far exceeded that in the additional strength provided by the roots. Under undrained conditions, the roots enhanced the soil strength by bearing part of the external loads and preventing the development of excess pore water pressure. Furthermore, the critical state line of a root-soil composite depended on the stress path. Since roots are non-granular materials and their mechanical reinforcement effect varies under different stress paths. Additionally, the roots enhanced liquefaction resistance of the sand by raising the initial effective stress required for triggering static liquefaction and the critical state effective stress. The greater the root volume density was, the stronger the liquefaction resistance of the sand.

期刊论文 2025-04-10 DOI: 10.1007/s11440-025-02605-y ISSN: 1861-1125

In geotechnical engineering, bioinspired ideas such as snakeskin-inspired solutions for frictionally anisotropic continuum materials have been receiving increased attention due to their ability to create resilient and efficient geomaterial-continuum interfaces. Several studies have found that snakeskin-inspired continuum surfaces mobilise significant frictional anisotropy with different soils. However, studies on the effect of snakeskin-inspired patterns on other continuum geomaterials, such as rock surfaces, which can have promising applications like friction rock bolts, are rare. This study aims to address this gap by investigating the effect of snakeskin-inspired patterns on the shear behaviour of soft rocks, which is simulated by Plaster of Paris (PoP). For this purpose, snakeskin-inspired continuum surfaces with surface patterns inspired from the ventral scales of a snake with five different scale angles (10 degrees, 13 degrees, 16 degrees, 19 degrees and 22 degrees) were 3D printed with Polylactic Acid (PLA) polymer using a Fused Filament Fabrication (FFF) 3D printer. The interface shear behaviour of these surfaces with PoP was investigated using a customised interface shear testing apparatus under three normal loads: 1000 N, 2000 N and 3000 N. The results of the tests confirm that snakeskin-inspired patterns on continuum material mobilise substantial anisotropic friction and that the interface shear response depends on the shearing direction and the scale angle. The shearing direction significantly affects the peak and post-peak shear behaviour and the strain softening behaviour of the snakeskin-inspired interfaces. The study yields promising results for applying snakeskin-inspired patterns to create rock bolts with direction-dependent friction and enhances the existing knowledge in bioinspired geotechnics.

期刊论文 2025-04-01 DOI: 10.1007/s40891-025-00627-w ISSN: 2199-9260
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 末页
  • 跳转
当前展示1-10条  共67条,7页