Highlights What are the main findings? The bast fibers extracted from the second generation of energy crop L. biomass have consistent yield and stable productivity across different seasons; Sida hermaphroditaThe results revealed a favorable moisture content, strength, and toughness, suitable for storage and processing. What are the implications of the main findings? fibers are suitable for use in a wide range of industrial applications, where a combination of lightness, strength, and toughness is required; Sida hermaphroditaAccording to the circular economy principles, a high percentage of side streams after fiber isolation are successfully applied for biofuel production.Highlights What are the main findings? The bast fibers extracted from the second generation of energy crop L. biomass have consistent yield and stable productivity across different seasons; Sida hermaphroditaThe results revealed a favorable moisture content, strength, and toughness, suitable for storage and processing. What are the implications of the main findings? fibers are suitable for use in a wide range of industrial applications, where a combination of lightness, strength, and toughness is required; Sida hermaphroditaAccording to the circular economy principles, a high percentage of side streams after fiber isolation are successfully applied for biofuel production.Abstract Virginia mallow or Sida hermaphrodita (L.) Rusby (SH) is a perennial plant from the Malvaceae family (mallows) that is used for medicinal purposes, reducing soil erosion, cleaning soil, and most recently for energy production. The potential of sustainable lignocellulosic agro-waste is immense as it represents Earth's most abundant organic compound. This paper explores fibers isolated from SH stems, a plant with significant industrial application potential, including technical textiles and biocomposites. The fibers were harvested in January, March, and November of 2020 and in January and March of 2021, and their yield, mechanical properties, moisture content, and density were thoroughly analyzed. The fiber yield showed slight variations depending on the harvest time, with consistent results observed across different years, suggesting stable productivity. The SH fibers demonstrated a favorable moisture content, making them suitable for storage and processing, and their density ranged between 1.52 and 1.58 g/cm3, comparable to that of other natural fibers. According to this research, the best mechanical properties were observed in the winter harvest. Furthermore, the high percentage of solid residue left after fiber extraction shows promise for sustainable utilization, primarily for biofuel production. This study underscores the versatility and sustainability of SH fibers, positioning them as a valuable resource for a wide range of industrial applications.
The risk of carbon emissions from permafrost is linked to an increase in ground temperature and thus in particular to thermal insulation by vegetation, soil layers and snow cover. Ground insulation can be influenced by the presence of large herbivores browsing for food in both winter and summer. In this study, we examine the potential impact of large herbivore presence on the soil carbon storage in a thermokarst landscape in northeastern Siberia. Our aim in this pilot study is to conduct a first analysis on whether intensive large herbivore grazing may slow or even reverse permafrost thaw by affecting thermal insulation through modifying ground cover properties. As permafrost soil temperatures are important for organic matter decomposition, we hypothesize that herbivory disturbances lead to differences in ground-stored carbon. Therefore, we analyzed five sites with a total of three different herbivore grazing intensities on two landscape forms (drained thermokarst basin, Yedoma upland) in Pleistocene Park near Chersky. We measured maximum thaw depth, total organic carbon content, delta C-13 isotopes, carbon-nitrogen ratios, and sediment grain-size composition as well as ice and water content for each site. We found the thaw depth to be shallower and carbon storage to be higher in intensively grazed areas compared to extensively and non-grazed sites in the same thermokarst basin. First data show that intensive grazing leads to a more stable thermal ground regime and thus to increased carbon storage in the thermokarst deposits and active layer. However, the high carbon content found within the upper 20 cm on intensively grazed sites could also indicate higher carbon input rather than reduced decomposition, which requires further studies including investigations of the hydrology and general ground conditions existing prior to grazing introduction. We explain our findings by intensive animal trampling in winter and vegetation changes, which overcompensate summer ground warming. We conclude that grazing intensity-along with soil substrate and hydrologic conditions-might have a measurable influence on the carbon storage in permafrost soils. Hence the grazing effect should be further investigated for its potential as an actively manageable instrument to reduce net carbon emission from permafrost.
同波束VLBI通过同时观测两个探测器的多点频信号,可以得到两个探测器之间高精度的差分相位时延,日本月球探测计划SELENE充分体现了这一技术在月球探测器精密定轨中的贡献。本文针对采样返回的月球探测任务中,轨道器和返回器同时绕月飞行期间,研究利用同波束VLBI跟踪数据在探测器精密定轨和月球重力场仿真解算中的贡献。结果表明,加入同波束VLBI跟踪数据之后,探测器定轨精度有显著提高,改进超过一个量级。综合同波束VLBI跟踪数据解算得到的重力场模型相比于传统的USB双程测距测速数据,中低阶次位系数精度有明显改进,并且定轨精度有望能达到米级。
2008年12月6日"嫦娥一号"卫星开始了为期半个月的变轨试验,卫星距离月球表面最近处约为15km,这在国内尚属首次。试验期间,国内USB和VLBI测控网进行了跟踪测量,获取了卫星不同飞行高度的测轨资料。通过对变轨试验期间的USB和VLBI测量数据的定轨计算,分析了月球重力场误差对于绕月低轨卫星的影响,计算表明,尽管目前的月球重力场模型高阶项由于没有月球背面的测量数据而不准确,但对绕月低轨卫星的定轨精度提高仍然有重要帮助。分析了VLBI数据对绕月低轨卫星定轨的贡献,比较了USB数据单独定轨以及USB和VLBI联合定轨两种情况,结果表明VLBI数据的加入可有效提高定轨精度。该工作对于我国后续月球探测工程具有一定的借鉴意义。