Surface soil moisture (SSM) is a key limiting factor for vegetation growth in alpine meadow on the Qinghai-Tibetan Plateau (QTP). Patches with various sizes and types may cause the redistribution of SSM by changing soil hydrological processes, and then trigger or accelerate alpine grassland degradation. Therefore, it is vital to understand the effects of patchiness on SSM at multi-scales to provide a reference for alpine grassland restoration. However, there is a lack of direct observational evidence concerning the role of the size and type of patches on SSM, and little is known about the effects of patches pattern on SSM at plot scale. Here, we first measured SSM of typical patches with different sizes and types at patch scale and investigated their patterns and SSM spatial distribution through unmanned aerial vehicle (UAV)-mounted multi-type cameras at plot scale. We then analyzed the role of the size and type of patchiness on SSM at both patch and plot scales. Results showed that: (1) in situ measured SSM of typical patches was significantly different (P < 0.01), original vegetation patch (OV) had the highest SSM, followed by isolate vegetation patch (IV), small bare patch (SP), medium bare patch (MP) and large bare patch (LP); (2) the proposed method based on UAV images was able to estimate SSM (0-40 cm) with a satisfactory accuracy (R-2 = 0.89, P < 0.001); (3) all landscape indices of OV, with the exception of patch density, were positively correlated with SSM at plot scale, while most of the landscape indices of LP and IV showed negative correlations (P < 0.05). Our results indicated that patchiness intensified the spatial heterogeneity of SSM and potentially accelerated the alpine meadow degradation. Preventing the development of OV into IV and the expansion of LP is a critical task for alpine meadow management and restoration.
Vast deserts and sandy lands in the mid-latitudes cover an area of 17.64 x 106 km2, with 6.98 x 106 km2 experiencing seasonal frozen soil (SFG). Freeze-thaw cycles of SFG significantly influence local surface processes in deserts, impacting meteorological disasters such as infrastructure failures and sandstorms. This study investigates the freeze-thaw dynamics of SFG in crescent dunes from three deserts in northern China: the Tengger Desert, Mu Us Sandy Land, and Ulan Buh Desert, over the period from 2019 to 2024.Freezing occurs from November to January, followed by thawing from January to March. The thawing rate (2.72 cm/day) was 1.8 times higher than the freezing rate (1.48 cm/day). The maximum seasonal freezing depth (MSFD) exceeded 0.80 mat all dune slopes, with depths surpassing 1.10 mat the leeward slope and lower slope positions. Soil moisture content, ranging from 1 % to 1.6 %, is critical for freezing, and this threshold varies depending on the dune's mechanical composition. The hardness of frozen desert soil is primarily controlled by moisture, along with temperature and particle size.Temperature initiates freezing, while moisture and particle size control the resulting hardness.These findings shed light on the seasonal freeze-thaw processes in desert soils and have practical implications for agricultural management, engineering design, and environmental hazard mitigation in arid regions.
Numerous endorheic lakes in the Qinghai-Tibet Plateau (QTP) have shown a dramatic increase in total area since 1996. These expanding lakes are mainly located in the interior regions of the QTP, where permafrost is widely distributed. Despite significant permafrost degradation due to global warming, the impact of permafrost thawing on lake evolution in QTP has been underexplored. This study investigated the permafrost degradation and its correlation with lake area increase by selecting four lake basins (Selin Co, Nam Co, Zhari Namco, and Dangqiong Co) in QTP for analysis. Fluid-heat-ice coupled numerical models were conducted on the aquifer cross-sections in these four lake basins, to simulate permafrost thawing driven by rising surface temperatures, and calculate the subsequent changes in groundwater discharge into the lakes. The contribution of these changes to lake storage, which is proportional to lake area, was investigated. Numerical simulation indicates that from 1982 to 2011, permafrost degradation remained consistent across the four basins. During this period, the active layer thickness first increased, then decreased, and partially transformed into talik, with depths reaching up to 25 m. By 2011, groundwater discharge had significantly risen, exceeding 2.9 times the initial discharge in 1988 across all basins. This increased discharge now constitutes up to 17.67 % of the total lake water inflow (Selin Co). The dynamic lake water budget further suggests that groundwater contributed significantly to lake area expansion, particularly since 2000. These findings highlight the importance of considering permafrost thawing as a crucial factor in understanding the dynamics of lake systems in the QTP in the context of climate change.
Estimating Top-of-Atmosphere (TOA) flux and radiance is essential for understanding Earth's radiation budget and climate dynamics. This study utilized polar nephelometer measurements of aerosol scattering coefficients at 17 angles (9-170 degrees), enabling the experimental determination of aerosol phase functions and the calculation of Legendre moments. These moments were then used to estimate TOA flux and radiance. Conducted at a tropical coastal site in India, the study observed significant seasonal and diurnal variations in angular scattering patterns, with the highest scattering during winter and the lowest during the monsoon. Notably, a prominent secondary scattering mode, with varying magnitude across different seasons, was observed in the 20-30 degrees angular range, highlighting the influence of different air masses and aerosol sources. Chemical analysis of size-segregated aerosols revealed that fine-mode aerosols were dominated by anthropogenic species, such as sulfate, nitrate, and ammonium, throughout all seasons. In contrast, coarse-mode aerosols showed a clear presence of sea-salt aerosols during the monsoon and mineral dust during the pre-monsoon periods. The presence of very large coarse-mode non-spherical aerosols caused increased oscillations in the phase function beyond 60 degrees during the pre-monsoon and monsoon seasons. This also led to a weak association between the phase function derived from angular scattering measurements and those predicted by the Henyey-Greenstein approximation. As a result, TOA fluxes and radiances derived using the Henyey-Greenstein approximation (with the asymmetry parameter as input in the radiative transfer model) showed a significant difference- up to 24% in seasons with substantial coarse-mode aerosol presence- compared to those derived using the Legendre moments of the phase function. Therefore, TOA flux and radiance estimates using Legendre moments are generally more accurate in the presence of complex aerosol scattering characteristics, particularly for non-spherical or coarse-mode aerosols, while the Henyey-Greenstein phase function may yield less accurate results due to its simplified representation of scattering behavior.
The extent of wildfires in tundra ecosystems has dramatically increased since the turn of the 21st century due to climate change and the resulting amplified Arctic warming. We simultaneously studied the recovery of vegetation, subsurface soil moisture, and active layer thickness (ALT) post-fire in the permafrost-underlain uplands of the Yukon-Kuskokwim Delta in southwestern Alaska to understand the interaction between these factors and their potential implications. We used a space-for-time substitution methodology with 2017 Landsat 8 imagery and synthetic aperture radar products, along with 2016 field data, to analyze tundra recovery trajectories in areas burned from 1953 to 2017. We found that spectral indices describing vegetation greenness and surface albedo in burned areas approached the unburned baseline within a decade post-fire, but ecological succession takes decades. ALT was higher in burned areas compared to unburned areas initially after the fire but negatively correlated with soil moisture. Soil moisture was significantly higher in burned areas than in unburned areas. Water table depth (WTD) was 10 cm shallower in burned areas, consistent with 10 cm of the surface organic layer burned off during fire. Soil moisture and WTD did not recover in the 46 years covered by this study and appear linked to the long recovery time of the organic layer.
Multi-source precipitation products (MSPs) are critical for hydrologic modeling, but their spatial and temporal heterogeneity and uncertainty present challenges to simulation accuracy that need to be addressed urgently. This study assessed the impact of different precipitation data sources on hydrologic modeling in an arid basin. There were seven precipitation products and meteorological station interpolated data that were used to drive the hydrological model, and we evaluated their performance by fusing the six precipitation products through the dynamic bayesian averaging algorithm. Ultimately, the runoff simulation uncertainty was quantified based on the DREAM algorithm, and the information transfer entropy was used to quantify the differences in hydrologic simulation processes driven by different precipitation data. The results showed that CMFD and ERA5 weights were higher, and the DBMA fused precipitation annual mean value was about 309.83 mm with good simulation accuracy (RMSE of 1.46 and R-2 of 0.75). The simulation was satisfactory (NSE >0.80) after parameter calibration and data assimilation for all driving data, with CHIRPS and TRMM performed better in the common mode, and HRLT and CMFD performed excellently in the glacier mode. The DREAM algorithm indicated less uncertainty for DBMA, CHIRPS and HRLT data. The entropy of information transfer revealed that precipitation occupied a significant position in information transfer, especially affecting evapotranspiration and surface soil moisture. CMFD and TPS CMADS were highest in snow water equivalent information entropy, and CHIRPS and TPS CMADS were highest in evapotranspiration information entropy. CDR, CHIRPS, ERA5-Land and IDW STATION had the highest snow water equivalent information entropy, DBMA and CMORPH had the highest runoff information entropy, CHIRPS and TRMM had the highest soil moisture information entropy, whereas ERA5, HRLT, and TPS CMADS had the highest evapotranspiration information entropy in glacial mode. This study reveals significant differences between different precipitation data sources in hydrological modeling of arid basin, which is an important reference for future water resources management and climate change adaptation strategies.
In the context of global climate change, changes in unfrozen water content in permafrost significantly impact regional terrestrial plant ecology and engineering stability. Through Differential Scanning Calorimetry (DSC) experiments, this study analyzed the thermal characteristic indicators, including supercooling temperature, freezing temperature, thawing temperature, critical temperature, and phase-transition temperature ranges, for silt loam with varying starting moisture levels throughout the freezing and thawing cycles. With varying starting moisture levels throughout the freezing and thawing cycles, a model describing the connection between soil temperature and variations in unfrozen water content during freeze-thaw cycles was established and corroborated with experimental data. The findings suggest that while freezing, the freezing and supercooling temperatures of unsaturated clay increased with the soil's starting moisture level, while those of saturated clay were less affected by water content. During thawing, the initial thawing temperature of clay was generally below 0 degrees C, and the thawing temperature exhibited a power function relationship with total water content. Model analysis revealed hysteresis effects in the unfrozen water content curve during freeze-thaw cycles. Both the phase-transition temperature range and model parameters were sensitive to temperature changes, indicating that the processes of permafrost freezing and thawing are mainly controlled by ambient temperature changes. The study highlights the stability of the difference between freezing temperature and supercooling temperature in clay during freezing. These results offer a conceptual framework for comprehending the thawing mechanisms of permafrost and analyzing the variations in mechanical properties and terrestrial ecosystems caused by temperature-dependent moisture changes in permafrost.
A cast-in-place pile foundation, widely utilized in the permafrost regions of the Qinghai-Tibet Plateau, boasts superior load-bearing capacity, effectively mitigating the seasonal freeze-thaw effects. In permafrost regions, substantial pile foundation load-bearing capacity is provided by freezing strength, with the freezing strength determined by the temperature of the surrounding permafrost. In modern times, global warming has been causing permafrost degradation, posing a risk to the safety of existing pile foundations. In order to maintain the stability of these foundations, it is crucial to release excess ground heat, considering the temperature-dependent freezing strength of the ground to pile shaft. Two-phase closed thermosyphons (TPCTs) have demonstrated strong performance in the realm of cooling permafrost engineering. In this study, TPCTs were utilized to mitigate the impact of permafrost degradation by installing them around a concrete pile in order to cool the foundation ground. Following this installation, a model experiment was carried out, which ingeniously focused on analyzing the cooling performance, the process of cold energy dissipation, and the cooling scope of the TPCT pile. The study's findings indicate that the operation time of the TPCT pile accounted for about 50% of the entire freeze-thaw cycle. This device could effectively cool the surrounding foundation soil within a specified area. The TPCT pile exhibited a low temperature advantage of 0.36 degrees C in comparison with the scenario without TPCT in terms of surrounding geotemperature, although it experienced significant cold energy dissipation. The conclusions drawn from this study have significant value for maintaining piles in permafrost regions.
Frozen soil resistivity exhibits high sensitivity to temperature variations and ice-water distribution. The conversion of soil water content (SWC) and resistivity based on petrophysical relationships enables the characterization of spatial distribution and changes in freezing and thawing states. Monitoring ground resistivity is essential for understanding frozen soil structure and evaluating climate change and ecosystems. The previous studies demonstrate that estimating soil resistivity below zero degrees based on the empirical model has significant errors. This work proposes a capillary bundle fractal model for frozen soil resistivity estimation based on SWC hydrologic parameters. The fractal theory describes the geoelectrical features of frozen porous media through the variable pore geometry and representative elementary volume. The sensitivity analysis discusses the potential relationships between pore parameters, conductance components, and fractal geometric parameters within frozen soil resistivity and reconstructs the hysteresis separation of freeze-thaw processes. The field test application in the seasonal freeze-thaw monitoring site demonstrates that the estimated resistivity and experimental samples are consistent with the field monitoring resistivity data. By combining unified conceptual assumptions, we established the connection between electrical permeability and thermal conductivity, offering a basis for exploring coupled hydro-thermal mechanisms in frozen soil. The proposed model accurately estimates the variations in seasonal frozen resistivity, providing a reliable reference for quantitatively analyzing the mechanisms of freeze-thaw processes.
Soil microorganisms play a pivotal role in the biogeochemical cycles of alpine meadow ecosystems, especially in the context of permafrost thaw. However, the mechanisms driving microbial community responses to environmental changes, such as variations in active layer thickness (ALT) of permafrost, remain poorly understood. This study utilized next-generation sequencing to explore the composition and co-occur rence patterns of soil microbial communities, focusing on bacteria and micro-eukaryotes along a permafrost thaw gradient. The results showed a decline in bacterial alpha diversity with increasing permafrost thaw, whereas micro-eukaryotic diversity exhibi ted an opposite trend. Although changes in microbial community composition were observed in permafrost and seasonally frozen soils, these shifts were not statistically significant. Bacterial communities exhibited a greater differentiation between frozen and seasonally frozen soils, a pattern not mirrored in eukaryotic communities. Linear discriminant analysis effect size analysis revealed a higher number of potential biomark ers in bacterial communities compared with micro-eukaryotes. Bacterial co-occurrence networks were more complex, with more nodes, edges, and positive linkages than those of micro-eukaryotes. Key factors such as soil texture, ALT, and bulk density significantly influenced bacterial community structures, particularly affecting the relative abundan ces of the Acidobacteria, Proteobacteria, and Actinobacteria phyla. In contrast, fungal communities (e.g., Nucletmycea, Rhizaria, Chloroplastida, and Discosea groups) were more affected by electrical conductivity, vegetation coverage, and ALT. This study highlights the distinct responses of soil bacteria and micro-eukaryotes to permafrost thaw, offering insights into microbial community stability under global climate change.