Heating method shows considerable potential for mitigating frost heave of subgrade in cold regions. However, the water-heat-deformation characteristics of subgrade under the coupling effect of freezing-thawing and heating effect remain unclear, which hampers the optimization and widespread application of heating method. Therefore, this paper proposes a numerical model of subgrade water-heat-deformation considering heating effect. The influence and mechanism of heating effect on water-heat-deformation of subgrade is systematically analyzed. The results show that the heating effect changes the water-heat-deformation state of subgrade. Furthermore, the combined influence of shady-sunny slope effect and ballast layer ensures that ground temperature near the subgrade center remains above 0 degrees C, thereby preventing the formation of ice lenses and frost heave. However, the shoulders on both sides enter a freezing state, and freezing rate, freezing depth and frost heave are reduced by more than 45 %, 60 % and 60 % respectively compared with the comparison subgrade. The freezing depth, driving force and rate of water migration are significantly affected by heating effect, which increases the pathways of water upward migration and greatly weakens the segregated frost heave of subgrade. This is the primary mechanism through which the heating method effectively mitigates frost heave in subgrades.