This study investigated the hydraulic and mechanical behaviors of unsaturated coarse-grained railway embankment fill materials (CREFMs) using a novel unsaturated large-scale triaxial apparatus equipped with the axis translation technique (ATT). Comprehensive soil-water retention and constant-suction triaxial compression tests were conducted to evaluate the effects of initial void ratio, matric suction, and confining pressure on the properties of CREFMs. Key findings reveal a primary suction range of 0-100 kPa characterized by hysteresis, which intensifies with decreasing density. Notably, the air entry value and residual suction are influenced by void ratio, with higher void ratios leading to decreased air entry values and residual suctions, underscoring the critical role of void ratio in hydraulic behavior. Additionally, the critical state line (CSL) in the bi-logarithmic space of void ratio and mean effective stress shifts towards higher void ratios with increasing matric suction, significantly affecting dilatancy and critical states. Furthermore, the study demonstrated that the mobilized friction angle and modulus properties depend on confining pressure and matric suction. A novel modified dilatancy equation was proposed, which enhances the predictability of CREFMs' responses under variable loading, particularly at high stress ratios defined by the deviatoric stress over the mean effective stress. This research advances the understanding of CREFMs' performance, especially under fluctuating environmental conditions that alter suction levels. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The granular and natural characteristics of soil introduce size effects to its deformation and strength properties. Therefore, investigating the phenomenon of strain localisation in soil requires a multi-scale characterisation. This study examined the intrinsic scale patterns in samples with different sizes of reinforcing particles through triaxial compression tests. Additionally, the formation mechanism of microscopic shear bands was investigated using numerical simulation methods. Drawing from the soil cell model theory, the average strain energy release coefficient was introduced to validate the transformation of the overall strain energy of the specimen after reaching the peak stress. This reflects the progressive initiation and competitive process of multiple bands. The results indicate that samples with different sizes and types of reinforcing particles exhibit various failure patterns, including single-type, 'x'-shaped, 'v'-shaped, parallel and others. The soil exhibits size effects, with the ratio of intrinsic scale to particle size decreasing as the size of reinforcing particles increases. Prior to the stress peak, non-elastic dissipation energy begins to increase, indicating the initiation of plastic deformation in the soil. Localised strain zones are activated, and after the peak, there is a sharp increase in stress within the shear bands, accompanied by rebound outside the band.
The artificial ground freezing (AGF) method is a frequently-used reinforcement method for underground engineering that has a good effect on supporting and water-sealing. When employing the AGF method, the mesoscopic damage reduces the strength of the frozen sandy gravel and consequently affects the bearing capacity of the frozen curtain. However, a few studies have been conducted on the mesoscopic damage of artificial frozen sandy gravel, which differs from fine-grained soil due to its larger gravel size. Therefore, based on triaxial compression tests and CT scanning tests, this paper investigates both the mesoscopic damage mechanism and variations in artificial frozen sandy gravels. The findings indicate that there are contact pressures between gravel tips within the frozen sandy gravel, with damage primarily concentrated around these gravels during incompatible deformation within a four-phase medium consisting of ice, water, soil, and gravel. Furthermore, numerical simulation validates that failure typically initiates at delicate contact surfaces between gravel and soil particles. For instance, when the axial strain reaches 8%, the plastic strain at the location of gravel contact reaches 4.6, which significantly surpasses most of the surrounding plastic strain zones measuring around 1.3. Additionally, the maximum local stress within the soil sample is as high as 48 MPa. This failure event is distinct from viscoplastic failure observed in frozen fine-grained soil or brittle failure seen in frozen rock. The findings also indicate that the mesoscopic damage is about 0.3 when the axial strain is 10%. The study's findings can serve as a valuable guide for developing finite element models to assess damage caused by freezing in sandy gravel using AGF method.
The complex distribution characteristics of root-soil composites pose challenges in understanding their mechanical behaviour during conservation tillage. This study aims to analyse mechanical parameters of root-soil composites at different soil depths, considering root distribution, and establish an empirical critical state model. Three layers were defined based on root density distribution: Shallow Aggregated Root Zone (SARZ: 0-60 mm), Middle Enriched Root Zone (MERZ: 60-150 mm), and Deep Extended Root Zone (DERZ: 150-210 mm). Triaxial tests revealed varying shear strengths, with MERZ exhibiting the highest and SARZ the lowest. The Duncan-Chang model parameters, initial modulus of deformation, and initial Poisson's ratio were significantly influenced by soil depth, mirroring shear strength trends. An empirical formula incorporating soil layer depth into the Duncan-Chang model was proposed. Critical state stress ratios for SARZ and MERZ were determined as 0.93 and 1.11, respectively, quantifying their relationship with soil depth and root distribution. This study provides theoretical and parameter support for understanding the failure mechanism of root-soil composites.
Fault fracture zones, characterized by high weathering, low strength, and a high degree of fragmentation, are common adverse geological phenomena encountered in tunneling projects. This paper performed a series of large-scale triaxial compression tests on the cohesive soil-rock mixture (SRM) samples with dimensions of 500 mm x 1000 mm to investigate the influence of rock content P-BV (20, 40, and 60% by volume), rock orientation angle alpha, and confining pressure on their macro-mechanical properties. Furthermore, a triaxial numerical model, which takes into account P-BV and alpha, was constructed by means of PFC3D to investigate the evolution of the mechanical properties of the cohesive SRM. The results indicated that (1) the influence of the alpha is significant at high confining pressures. For the sample with an alpha of 0 degrees, shear failure was inhibited, and the rock blocks tended to break more easily, while the samples with an alpha of 30 degrees and 60 degrees exhibited fewer fragmentations. (2) P-BV significantly affected the shear behaviors of the cohesive SRM. The peak deviatoric stress of the sample with an alpha of 0 degrees was minimized at lower P-BV (60%). Based on these findings, an equation correlating shear strength and P-BV was proposed under consistent alpha and matrix strength conditions. This equation effectively predicts the shear strength of the cohesive SRM with different P-BV values.
Soil-rock mixtures in fault fracture zones are composed of rock blocks with high strength and fault mud with low strength. In this paper, in order to study the mechanical properties of the soil-rock mixture with non-cohesive matrix, a large-scale laboratory triaxial compression test with a specimen size of 500 mmx1000 mm is conducted, combined with numerical simulation analyses based on the two-dimensional particle flow software PFC2D. The macroscopic mechanical response and mesoscopic fracture mechanism of soil-rock mixtures with varying rock block proportions, block orientation angles and matrix strengths are studied. The results indicate the following: (1) When the proportion is less than 30%, the shear characteristics of the mixture are similar to those of its non-cohesive matrix. When the proportion is in the range of 30-70%, the internal friction angle and cohesion increase rapidly, and the softening characteristics of the mixture become more apparent. When the proportion exceeds 70%, the aforementioned effect slows. (2) The strength of the mixture is positively correlated with its matrix strength, and the influence of the matrix strength on the loading curve of the mixture is related to the block proportion. (3) When the block orientation angle is 0 degrees, the cohesion and internal friction angle are slightly greater than those at an angle of 90 degrees. Based on the above, for the soil-rock mixture with non-cohesive matrix, a strength prediction model based on the block proportion is given when the block orientation angle and matrix strength are consistent.
The stability of soil is an essential requirement for various geotechnical engineering projects. The application of composite materials made from cemented soil has become prevalent in road subgrade engineering and foundation treatment due to their affordability, quick construction, and ability to withstand high compression forces. However, the mechanism about the incorporating fibers into cemented soil to enhance strength characteristics, mitigate the formation of microcracks in the soil matrix, and increase frost resistance is still unclear. In this study, a composite improvement method of adding basalt fiber (BF) to cemented soil is proposed, which is to select a single subgrade filling material with most significant freeze-thaw (FT) durability on the basis of traditional cement improvement methods. A series of static/dynamic triaxial compression tests were performed with cemented soil samples reinforced by three BF contents (0, 0.25%, 0.50%, and 0.75%) after FT cycles. The physical properties of these samples were studied, such as the optimal ratio of fiber content, the stress-strain relationship, failure strength, shear strength, and shear modulus, among others. The results revealed that both the shear modulus and failure strength of cemented subgrade soil reinforced with BF showed a significant increase. Compared with cemented soil, fiber-cemented soil exhibited a lower reduction rate in its mechanical properties after 15 FT cycles. The cohesion of the reinforced soil exhibited a gradual decrease as the number of FT cycles increased. Conversely, the friction angle initially decreased but later exhibited an increase. Compared with the reinforcement effects of BF at 0.25% and 0.75%, fiber-reinforced cemented soil with BF content of 0.5% demonstrated the highest strength and performed well in minimizing the effect of FT cycles. It is therefore recommended that ratio of 6% cement and 0.5% BF should be used to enhance the integrity of subgrade filling materials on silty clay.
An updated DEM simulation scheme for clay is implemented by incorporating convex polygon shaped platelets and robust algorithm for physico-chemical-mechanical interaction between clay platelets. Clays with two typical microscopic structures, i.e., card-house structure and book-house structure, are simulated in oedometer test and triaxial compression test. Virtual Mercury Intrusion Porosimetry (MIP) and pore segmentation algorithms are utilized to extract pore statistics from the numerical samples. The simulation results and experimental results from the literature are thoroughly compared at both macroscopic and microscopic scales. It is found that the implemented DEM simulation scheme can satisfactorily reproduce the experimentally observed macroscopic behavior of clay. Especially, in triaxial compression tests, the critical state behavior, stress-dilatancy relationship and over-consolidation effects are generally consistent with existing experimental results. General consistency in pore size, orientation and shape distributions in DEM simulations and experiments can be observed. Clay platelets tend to rotate to align their normal directions along the major principal stress direction, while pores tend to align their long-axis directions in the confinement direction, leading to dynamically evolving fabric anisotropy. In the book-house structure clay, clay domains experience multiple deformation modes, including uniaxial compaction, shear distortion, spatial spin, and their combinations.
Mixed fiber reinforced technique has been widely used in reinforcing the concrete due to its excellent performance in enhancing the strength, durability and stiffness. The improvement of fiber-reinforced soil (FRS) on the mechanical behaviour (e.g., stiffness and ductility) is limited due to the properties of single fibers. However, much studies focus on the single fiber based reinforced soil, two fibers or more mixing with soil do not be covered. Mixed fiber-reinforced soil (MFRS) is defined as the improvement of FRS, in which two different types of fibers are mixed into the soil to improve the shear strength and stiffness simultaneously. The tests were conducted using clay soil and Yongjiang sand, which were collected from the practical construction site of metro and Yongjiang River, respectively. The test results show that under the same test conditions (e.g., void ratio, confining pressure and fiber content), the MFRS always show higher deviator stress than the FRS. As carbon fibers and polypropylene fibers give higher stiffness and tensile strength respectively. Besides, the friction angle and cohesion of MFRS are also affected by fiber content. It is concluded that half of the carbon fiber content of MFRS has the same performance in the stress-strain relationship as the FRS with 100% carbon fiber content. However, the effectiveness of the reinforcement to clay soil is insignificant. As the reinforcements is relatively dependent on the characteristics of clay soil (e.g., mean diameter, coefficient uniformity). For the use of MFRS, it could decrease the cost of purchasing special fiber such as pure carbon fiber and aramid fiber, which are expensive, and it could be used in the long-terms constructions, which are required to last at least 100 years.
Artificial frozen sandy gravel exhibits the characteristics of wide distribution of particle size and complex composition, which are quite distinct from frozen fine-grained soils such as clay and silt. It may be more accurate to use both macroscopic and microscopic scales to evaluate the damage of artificial frozen sandy gravel. Therefore, this paper proposes an investigation on the macro-plastic damage and micro-crack damage of artificial frozen sandy gravel through triaxial compression and X-ray CT scanning tests. The two types of damage are obtained from completely different macro-plastic and micro-crack damage theoretical calculation methods. It can be concluded that the evolution law of the two damages is similar, but the value is different. Moreover, the defined cross-scale modified damage which is fitted through the calculated macro-plastic damage and micro-crack damage is proposed. The fitting functions reveal the evolution law of frozen sandy gravel damage more accurate, which is beneficial to the safety of the artificial ground freezing project and provides a valuable reference for subsequent numerical simulations of the frozen sandy gravel constitutive relationship.