AimGlobally, forests at the alpine-treeline ecotone (ATE) are considered sensitive to warming temperatures; however, responses to recent climate change show high variability and many underlying processes remain unclear. This study aims to provide further insight into possible ATE forest responses to climate change by examining spatiotemporal patterns in recent tree regeneration and growth responses to climate across treeline forms.LocationThis study is situated at the ATE in the Rocky Mountain and Columbia Mountain ranges in central British Columbia, Canada.TaxonGymnosperms - subalpine fir (Abies lasiocarpa Hooker (Nutall)).MethodsWe collected tree and stand data from 48 plots across five study sites. Plots were distributed across three treeline stand types: (i) islands; (ii) abrupt; and (iii) fringes of regeneration adjacent to tree islands. We used a dendrochronological approach to analyse the ages of recently established trees in fringe stand types, detect long-term trends in annual tree growth and quantify climate-growth relationships.ResultsSeedling recruitment adjacent to tree islands occurred over a period of approximately 40 years (1960-2000), with two regeneration pulses in the late 1970s and 1980s. Abrupt and fringe trees showed a similar age structure and annual radial growth has increased in most trees over the past 30 years. Across the study region and stand types, summer temperature has the strongest influence on radial growth. Over the past 70 years, growth in tree islands has become increasingly correlated with growing season temperature variables.Main ConclusionsForest growth and structure have changed in coherent spatial and temporal patterns over recent decades at the ATE in central BC. Projections for sustained warming in this region will likely result in increased tree growth and potential continued expansion of forests into untreed areas below the treeline. These changes will have implications for hydrological regimes, wildlife habitat and carbon sequestration.
Background and Aims Seed persistence in soil depends on environmental factors that affect seed dormancy and germination, such as temperature and water availability. In high-elevation ecosystems, rapid changes in these environmental factors because of climate change can impact future plant recruitment. To date, our knowledge on how soil seed banks from high-elevation environments will respond to climate change and extreme climate-related events is limited. Here, using the seedling emergence method, we investigated the effects of reduced snow cover, fire and drought on the density and diversity of germinants from soil seed banks of two high-elevation plant communities: a tall alpine herbfield and a treeline ecotone.Methods In Autumn 2020, we collected soil samples and characterized the standing vegetation of both communities at Kosciuszko National Park, Australia. Subsequently, we carried out a factorial experiment and subjected the soil samples to a series of manipulative treatments using greenhouse studies.Key Results The treeline had a larger and more diverse soil seed bank than the herbfield. A reduction in snow had a negative effect on the number of germinants in the herbfield and increased the dissimilarity with the standing vegetation, whereas the treeline responses were mainly neutral. Fire did not significantly affect the number of germinants but decreased the evenness values in both communities. The drought treatment reduced the number and richness of germinants and increased the dissimilarity with the standing vegetation in both communities. Plant functional forms explained some of the detected effects, but seed functional traits did not.Conclusions Our study suggests that simulated climate change will affect plant recruitment from soil seed banks in a variety of ways. Changes in snow cover and incidences of fire and drought might be key drivers of germination from the soil seed bank and therefore the future composition of alpine plant communities.
Tundra is primarily a habitat for shrub growth, not trees, but growth of prostrate forms of trees has been reported occasionally from the subarctic tundra region. In the light of on-going climate change, climate sensitivity studies of these unique trees are essential to predict vegetation dynamics and potential northward expansion of boreal forest tree species into tundra. Here we studied one of the northernmost Larix Mill. trees and Betula nana L. shrubs (72 degrees N) from the Siberian tundra for the common period 1980-2017. We took advantage of the discovery of a single cohort of prostrate Larix trees within a tundra ecosystem, i.e., ca. 60 km northwards from the northern treeline, and compared climate-growth relationships of the two species. Both woody plants were sensitive to the July temperature, however this relationship was stable across the entire study period (1980-2017) only for Betula nana chronology. Additionally, radial growth of Larix trees became negatively correlated to temperatures during the previous summer. In recent period moisture sensitivity between Larix trees and Betula nana shrubs was contrasting, with generally wetter soil conditions favoring Larix trees growth and dryer conditions promoting Betula nana growth. Our study indicates that Larix trees radial growth in recent years is more sensitive to moisture than to summer air temperatures, whereas temperature sensitivity of Betula nana shrub is stable over time. We provide first detailed insight into the annual resolution on Larix tree growth sensitivity to climate in the heart of the tundra. The potentially higher Betula nana shrub resistance to warmer and drier climate versus Larix trees on a tundra revealed in our study needs to be further examined across habitats of various soil, moisture and permafrost status.
Numerous studies have reported that treelines are moving to higher elevations and higher latitudes. Most treelines are temperature limited and warmer climate expands the area in which trees are capable of growing. Hence, climate change has been assumed to be the main driver behind this treeline movement. The latest review of treeline studies was published in 2009 by Harsch et al. Since then, a plethora of papers have been published studying local treeline migration. Here we bring together this knowledge through a review of 142 treeline related publications, including 477 study locations. We summarize the information known about factors limiting tree-growth at and near treelines. Treeline migration is not only dependent on favorable growing conditions but also requires seedling establishment and survival above the current treeline. These conditions appear to have become favorable at many locations, particularly so in recent years. The review revealed that at 66% of these treeline sites forest cover had increased in elevational or latitudinal extent. The physical form of treelines influences how likely they are to migrate and can be used as an indicator when predicting future treeline movements. Our analysis also revealed that while a greater percentage of elevational treelines are moving, the latitudinal treelines are capable of moving at greater horizontal speed. This can potentially have substantial impacts on ecosystem carbon storage. To conclude the review, we present the three main hypotheses as to whether ecosystem carbon budgets will be reduced, increased or remain the same due to treeline migration. While the answer still remains under debate, we believe that all three hypotheses are likely to apply depending on the encroached ecosystem. Concerningly, evidence is emerging on how treeline migration may turn tundra landscapes from net sinks to net sources of carbon dioxide in the future.
The long-term influence of climate change on spatio-temporal dynamics of the Polar mycobiota was analyzed on the eastern macro slope of the Polar Urals (Sob River valley and Mountain Slantsevaya) over a period of 60 years. The anthropogenic impact is minimal in the study area. Effects of environmental warming were addressed as changes in treeline and forest communities (greening of the vegetation). With warming, permafrost is beginning to thaw, and as it thaws, it decomposes. Therefore, we also included depth of soil thawing and litter decomposition in our study. Particular attention was paid to the reaction of aphyllophoroid fungal communities concerning these factors. Our results provide evidence for drastic changes in the mycobiota due to global warming. Fungal community composition followed changes of the vegetation, which was transforming from forest-tundra to northern boreal type forests during the last 60 years. Key fungal groups of the ongoing borealization and important indicator species are discussed. Increased economic activity in the area may lead to deforestation, destruction of swamps, and meadows. However, this special environment provides important services such as carbon sequestration, soil formation, protecting against flood risks, and filtering of air. In this regard, we propose to include the studied territory in the Polarnouralsky Natural Park.
Conifer mountain forests influence numerous human populations by providing a host of critical economic, sociological, and ecosystem services. Although the causes of the elevational, transitional boundaries of these forests (i.e., upper and lower timberlines) have been questioned for over a century, these investigations have focused predominately on the growth limitations of saplings or mature trees at the upper alpine boundary. Yet, the elevational movement of timberlines is dependent initially on new seedling establishment in favorable microsites that appear to be generated by ecological facilitation. Recent evidence suggests that this facilitation is critical during the initial 1-2 years of growth when survival may be less than a few percent, only cotyledons are present, and survival occurs only in favorable microsites created by inanimate objects (e.g., boulders, dead stems), microtopography, or already established vegetation. Dramatic changes in tree form (e.g., krummholz mats) across the timberline ecotone also plays an important role in generating microsite facilitation. These favorable, facilitated microsites have been characterized broadly as experiencing low sky exposure during summer (day and night) and leeward wind exposure during winter that generates protective snow cover, all of which are needed for new seedling survival. Thus, determining the specific microclimate and edaphic characteristics of favorable microsites, and their frequency at timberline, will provide a more mechanistic understanding and greater predictability of the future elevation and extent of conifer mountain forests. In addition, although the ecophysiological advantages of a needle-like leaf morphology is well established for adult conifer trees, the advantage of this phylogenetically unique trait in emergent seedlings has not been thoroughly evaluated. Understanding seedling ecophysiology and the functional morphology that contributes to survival, plus the nature and frequency of favorable microsites at timberline, will enable more reliable estimates of future elevational shifts in conifer mountain forests. This approach could also lead to the development of a valuable and sensitive tool for forest managers interested in evaluating future changes in these forests under increased large-scale infestation and drought mortality, as well as for current scenarios of predicted climate change.
Larch-dominant communities are the most extensive high-latitude forests in Eurasia and are experiencing the strongest impacts from warming temperatures. We analyzed larch (Larix dahurica Turcz) growth index (GI) response to climate change. The studied larch-dominant communities are located within the permafrost zone of Northern Siberia at the northern tree limit (ca. N 67A degrees 38', E 99A degrees 07'). Methods included dendrochronology, analysis of climate variables, root zone moisture content, and satellite-derived gross (GPP) and net (NPP) primary productivity. It was found that larch response to warming included a period of increased annual growth increment (GI) (from the 1970s to ca. 1995) with a follow on GI decline. Increase in GI correlated with summer air temperature, whereas an observed decrease in GI was caused by water stress (vapor pressure deficit and drought increase). Water stress impact on larch growth in permafrost was not observed before the onset of warming (ca. 1970). Water limitation was also indicated by GI dependence on soil moisture stored during the previous year. Water stress was especially pronounced for stands growing on rocky soils with low water-holding capacity. GPP of larch communities showed an increasing trend, whereas NPP stagnated. A similar pattern of GI response to climate warming has also been observed for Larix sibirica Ledeb, Pinus sibirica Du Tour, and Abies sibirica Ledeb in the forests of southern Siberia. Thus, warming in northern Siberia permafrost zone resulted in an initial increase in larch growth from the 1970s to the mid-1990s. After that time, larch growth increment has decreased. Since ca. 1990, water stress at the beginning of the vegetative period became, along with air temperature, a main factor affecting larch growth within the permafrost zone.
Fine-scale disturbance can increase seed access to suitable substrates, facilitating germinant emergence and survival, which are necessary elements for treeline advance. We conducted an experiment to test this hypothesis in a white spruce (Picea glauca) treeline ecotone in southwest Yukon, Canada. Sixty seed germination quadrats were established at two elevations (treeline and alpine tundra) and subjected to three levels of simulated disturbance. We sowed 125 seeds in half of the quadrats (30) and measured their emergence and survival over 3 years. Soil temperature, moisture, and organic depth were recorded in all treatments. Treeline quadrats had significantly greater seedling emergence and survival than alpine tundra quadrats. Mean soil temperature, moisture, and organic layer depth were all greater in treeline quadrats. Partially scarified quadrats had the highest germinant emergence compared to unscarified and completely scarified quadrats. Completely scarified quadrats had the highest temperature range and the lowest soil moisture. The results indicate that moderate levels of disturbance can positively influence seedling emergence, while more severe disturbance can lead to high temperature ranges and moisture loss that negate the benefits of lower interspecific competition. Collectively, our findings suggest that fine-scale disturbance can play a significant role in influencing seedling presence in treeline ecotones.
Eastern Siberia Russia is currently experiencing a distinct and unprecedented rate of warming. This change is particularly important given the large amounts of carbon stored in the yedoma permafrost soils that become vulnerable to thaw and release under warming. Data from this region pertaining to year-round carbon, water, and energy fluxes are scarce, particularly in sensitive ecotonal ecosystems near latitudinal treeline, as well as those already impacted by permafrost thaw. Here we investigated the interannual and seasonal carbon dioxide, water, and energy dynamics at an ecotonal forested site and a disturbed thermokarst-impacted site. The ecotonal site was approximately neutral in terms of CO2 uptake/release, while the disturbed site was either a source or neutral. Our data suggest that high rates of plant productivity during the growing season at the disturbed site may, in part, counterbalance higher rates of respiration during the cold season compared to the ecotonal site. We also found that the ecotonal site was sensitive to the timing of the freezeup of the soil active layer in fall, releasing more CO2 when freezeup occurred later. Both sites showed a negative water balance, although the ecotonal site appeared more sensitive to dry conditions. Water use efficiency at the ecotonal site was lower during warmer summers. Overall, these Siberian measurements indicate ecosystem sensitivity to warmer conditions during the fall and to drier conditions during the growing season and provide a better understanding of ecosystem response to climate in a part of the circumpolar Arctic where current knowledge is weakest. Plain Language Summary As Siberia warms, the frozen soils known as permafrost start to thaw, causing an irregular terrain of pits and mounds called thermokarst. Large amounts of carbon in Siberian soils have been locked away in permafrost for thousands of years, becoming vulnerable to release under thaw and thermokarst formation. This will potentially result in large amounts of additional greenhouse gases in the atmosphere, amplifying climate warming. We examined carbon dioxide (CO2) fluxes over multiple years at two sites in northeastern Siberia, an ecotonal site that lies at the transition between the boreal forest and tundra biomes, and a site with thermokarst. We found that the ecotonal site is carbon neutral, consuming the same amount of CO2 as it takes up from the atmosphere. However, this site releases greater amounts of CO2 in years when soil freeze occurred later, which is expected to become common in the future. The thermokarst site released significantly more CO2, but it was also marked by greater plant growth, thereby off-setting some of the CO2 lost. Due, in part, to a lack of data, models represent terrestrial ecosystem carbon dynamics in Siberia poorly and do not take into changes in carbon cycling that occur with thermokarst formation.
Positional treeline shift is a fundamental aspect and indicator of high-mountain vegetation response to climate change. This study analyses treeline performance during the period 2005/2007-2010/2011 in the Swedish Scandes. Focus is on mountain birch (Betula pubescens ssp. czerepanovii) along a regional climatic maritimity-continentality gradient. Treeline upshift by 3.0 yr(-1) in the maritime part differed significantly from retreat by 0.4 m yr(-1) in the continental part of the transect. This discrepancy is discussed in terms of differential warming-induced snow cover phenology patterns and their influence on soil moisture conditions. In the continental area, earlier and more complete melting of prior relatively rare late-lying snow patches, even high above the treeline, has progressed to a state when melt water irrigation ceases. As a consequence, soil drought sets back the vigor of existing birches and precludes sexual regeneration and upslope advance of the treeline. In the maritime area, extensive and deep snow packs still exist above the treeline and constrain its position, although some release is taking place in the current warm climate. Thereby, the birch treeline expands upslope as the alpine snow patches shrink, but continue to provide sufficient melt water throughout the summer. Treeline rise appears to have been based primarily on seed regeneration over the past few decades. This is a novelty, since prior (1915-2007) treeline advance was accomplished mainly by in situ shifts in growth form of relict krummholz birches, in some cases millennial-old, prevailing above the treeline. By the snow phenology mechanism, birch can benefit from climate warming in the maritime region, which contrasts with the situation in the continental region. This discrepancy should be accounted for in projective models. In a hypothetical case of sustained warming, the subalpine birch forest belt may expand less extensively than often assumed, although advance may continue for some time in snow rich maritime areas.