共检索到 2

concrete linings in tunnels constructed by drilling and blasting such as NATM serve as a secondary support structure. However, these linings can face unexpected earth pressures if the primary support deteriorates or if ground conditions becomeunfavorable.It is crucial to determine the loosening earth pressure that allows the lining to maintain its structural integrity and prevent damage caused by this pressure. This study proposes a numerical model for simulating the trapdoor test and developinga method for calculating the loosening earth pressure. The discrete element method (DEM) was employed to describe the soil characteristics around the tunnel. Using this numerical model, a sequence of experimental trapdoor steps was simulated, and the loosening earth pressure was analyzed. Contact parameters were calibrated based on an analysis of a triaxial compression test. The reliability of the developed model was confirmed through a comparison between simulation results and laboratory test findings. The model was used tocalculate the contact force applied to the trapdoor plate and to assess the settlement of soil particles. Furthermore, the model accounted for the soil-arching effect, which effectively redistributes the load to the surrounding areas. The proposed model can be applied to analyze the tunnel's cross-sectional dimensions and design stability under various ground conditions

期刊论文 2024-09-25 DOI: 10.12989/gae.2024.38.6.571 ISSN: 2005-307X

Underground excavation is usually accompanied by complex soil-structure interaction problems in practical engineering. This paper develops a novel multi-scale approach for investigating the soil arching effect through trapdoor tests. This approach adopts the finite element method (FEM) and smoothed particle hydrodynamics (SPH) method to handle the particle-rigid body interaction in the trapdoor tests, incorporating a micromechanical 3D-H model to derive the nonlinear material response required by the SPH method. The variation of the earth pressure on the trapdoor in simulations exhibits good agreement with those of the experiments. Extensive parametric analyzes are performed to assess the effects of soil height and inter-particle friction angle on the evolution of load transfer and soil deformation. Three deformation patterns are observed under different buried conditions, including the trapezoid, the triangle, and the equal settlement pattern. Results indicate that the planes of equal settlement develop progressively with the trapdoor movement and then enter the range of experimentally observed values. Additionally, three failure mechanisms are identified that correspond to the three deformation patterns. Due to the advantages of the micromechanical model, mesoscale behavior is captured. The anisotropy of stress distribution in the plastic region is found during the arching process.

期刊论文 2024-05-01 DOI: 10.1007/s11440-023-02148-0 ISSN: 1861-1125
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页