共检索到 2

Global warming has led to permafrost thawing in mid-latitude alpine regions, resulting in greater availability of carbon (C) and nutrients in soils. However, how these changes will impact the functional genetic potential of permafrost soil microbiomes, and subsequently, how they will influence the microbially mediated feedback of mountain soils under climate change remains unknown. To help answer this question, we conducted a permafrost thawing experiment on the north-facing slope near the summit of Muot da Barba Peider (2979 m above sea level) in the Swiss Alps. Specifically, we transplanted permafrost soils from a depth of 160 cm to the active-layer topsoils (0-18 cm) and incubated the soils in situ for three years. Using shotgun metagenomics, we found that transplantation significantly altered the gene structure of the permafrost microbiome, with changes occurring in the short term (< one year) and remaining stable over time. Transplanted soils exhibited an enhanced functional genetic potential, particularly for genes related to Information storage and processing, Cellular processes and signaling and Metabolism functions, which suggests increased cellular processes and metabolism. Carbohydrate-active enzymes involved in the degradation of both labile (such as starch) and recalcitrant (such as lignin) C substrates were enriched in transplanted soils, indicating an enhanced C-degradation potential. Nitrogen (N)-cycling genes related to the degradation and synthesis of N compounds, denitrification, assimilation and dissimilatory nitrate reduction were overrepresented in the transplanted soil, pointing to enhanced N assimilation and transformation potential. Our study elucidates how the permafrost microbiome may functionally respond to warming in the European Alps. This research complements observations from Tibetan and Arctic regions, improving our understanding of functional changes in thawing permafrost globally.

期刊论文 2025-06-01 DOI: 10.1016/j.geoderma.2025.117339 ISSN: 0016-7061

Global warming in mid-latitude alpine regions results in permafrost thawing, together with greater availability of carbon and nutrients in soils and frequent freeze-thaw cycles. Yet it is unclear how these multifactorial changes will shape the 1 m-deep permafrost microbiome in the future, and how this will in turn modulate microbiallymediated feedbacks between mountain soils and climate (e.g. soil CO2 emissions). To unravel the responses of the alpine permafrost microbiome to in situ warming, we established a three-year experiment in a permafrost monitoring summit in the Alps. Specifically, we simulated conditions of warming by transplanting permafrost soils from a depth of 160 cm either to the active-layer topsoils in the north-facing slope or in the warmer south-facing slope, near the summit. qPCR-based and amplicon sequencing analyses indicated an augmented microbial abundance in the transplanted permafrost, driven by the increase in copiotrophic prokaryotic taxa (e.g. Noviherbaspirillum and Massilia) and metabolically versatile psychrotrophs (e.g. Tundrisphaera and Granulicella); which acclimatized to the changing environment and potentially benefited from substrates released upon thawing. Metabolically restricted Patescibacteria lineages vastly decreased with warming, as reflected in the loss of alpha-diversity in the transplanted soils. Ascomycetous sapro-pathotrophs (e.g. Tetracladium) and a few lichenized fungi (e.g. Aspicilia) expanded in the transplanted permafrost, particularly in soils transplanted to the warmer south-facing slope, replacing basidiomycetous yeasts (e.g. Glaciozyma). The transplantation-induced loosening of microbial association networks in the permafrost could potentially indicate lesser cooperative interactions between neighboring microorganisms. Broader substrate-use microbial activities measured in the transplanted permafrost could relate to altered soil C dynamics. The three-year simulated warming did not, however, enhance heterotrophic respiration, which was limited by the carbon-depleted permafrost conditions. Collectively, our quantitative findings suggest the vulnerability of the alpine permafrost microbiome to warming, which might improve predictions on microbially-modulated transformations of moun-tain soil ecosystems under the future climate. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

期刊论文 2022-02-10 DOI: 10.1016/j.scitotenv.2021.150720 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页