Naturally-ignited wildfires are increasing in frequency and severity in northern regions, contributing to rapid permafrost thaw-induced landscape change driven by climate warming. Low-severity wildfires typically result in minor organic matter loss. The impacts of such fires on the hydrological and geochemical dynamics of peat plateau-wetland complexes have not been examined. In 2014, a low-severity wildfire, with minimal ground surface damage, burned approximately one-half of a 5 ha permafrost plateau in the wetland-dominated landscape of the Scotty Creek watershed, Northwest Territories, Canada, in the discontinuous permafrost zone. In March 2016, hydrometeorological and permafrost conditions on the burned and unaffected plateaus were monitored including snowpack characteristics and surface energy dynamics. Pore water samples were collected from the saturated layer as thaw progressed throughout the growing season on the burned and unaffected plateaus. Repeated probing of the frost table depth was coupled with laboratory analyses of peat physical and hydraulic characteristics performed on peat cores collected from the top 20 cm of the ground surface in the burned and unaffected plots. The higher transmissivity of the burned forest canopy accelerated snowmelt promoting earlier onset of the thawing season and increased the ground heat flux to melt ground ice. Wildfire increased the thickness of the supra-permafrost layer, including the active layer and talik, resulting in a more uniform subsurface with limited depressional storage capacity and reduced preferential runoff flowpaths across the burned plateau. The incorporation of ash and char into the peat matrix reduced pore diameters, promoting greater subsurface soil moisture retention and longer pore water residence times ultimately providing greater opportunity for soil water interaction and biogeochemical reactions. Consequently, pore water showed elevated dissolved solutes, dissolved organic matter and mercury concentrations in the burned site. Low-severity wildfires have the potential to trigger a series of complex, inter-related hydrological, thermal and biogeochemical processes and feedbacks. (C) 2021 Elsevier B.V. All rights reserved.
Stable Zn isotopes fractionation was studied in main biogeochemical compartments of a pristine larch forest of Central Siberia developed over continuous permafrost basalt rocks. Two north-and south-oriented watershed slopes having distinctly different vegetation biomass and active layer depth were used as natural proxy for predicting possible future climate changes occurring in this region. In addition, peat bog zone exhibiting totally different vegetation, hydrology and soil temperature regime has been studied. The isotopic composition of soil profile from Central Siberia is rather constant with a delta Zn-66 value around 0.2 parts per thousand close to the value of various basalts. Zn isotopic composition in mosses (Sphagnum fuscum and Pleurozium schreberi) exhibits differences between surface layers presenting values from 0.14 to 0.2 parts per thousand and bottom layers presenting significantly higher values (0.5 - 0.7 parts per thousand) than the underlain mineral surface. The humification of both dead moss and larch needles leads to retain the fraction where Zn bound most strongly thus releasing the lighter isotopes in solution and preserving the heavy isotopes in the humification products, in general accord with previous experimental and modeling works [GCA 75:7632-7643, 2011]. The larch (Larix gmelinii) from North and South-facing slopes is enriched in heavy isotopes compared to soil reservoir while larch from Sphagnum peatbog is enriched in light isotopes. This difference may result from stronger complexation of Zn by organic ligands and humification products in the peat bog compared to mineral surfaces in North- and South-facing slope. During the course of the growing period, Zn followed the behavior of macronutrients with a decrease of concentration from June to September. During this period, an enrichment of larch needles by heavier Zn isotopes is observed in the various habitats. We suggest that the increase of the depth of rooting zone, and the decrease of DOC and Zn concentration in soil solution from the root uptake zone with progressively thawing soil could provoke heavy isotopes to become more available for the larch roots at the end of the vegetative season compared to the beginning of the season, because the decrease of DOC will facilitate the uptake of heavy isotope as it will be less retained in strong organic complexes.