Climate change is transforming the ice-free areas of Antarctica, leading to rapid changes in terrestrial ecosystems. These areas represent <0.5% of the continent and coincide with the most anthropogenically pressured sites, where the human footprint is a source of contamination. Simultaneously, these are the locations where permafrost can be found, not being clear what might be the consequences following its degradation regarding trace element remobilisation. This raises the need for a better understanding of the natural geochemical values of Antarctic soils as well as the extent of human impact in the surroundings of scientific research stations. Permafrost thaw in the Western Antarctic Peninsula region and in the McMurdo Dry Valleys is the most likely to contribute to the remobilisation of toxic trace elements, whether as the result of anthropogenic contamination or due to the degradation of massive buried ice and ice-cemented permafrost. Site-specific locations across Antarctica, with abandoned infrastructure, also deserve attention by continuing to be a source of trace elements that later can be released, posing a threat to the environment. This comprehensive summary of trace element concentrations across the continent's soils enables the geographical systematisation of published results for a better comparison of the literature data. This review also includes the used analytical techniques and methods for trace element dissolution, important factors when reporting low concentrations. A new perspective in environmental monitoring is needed to investigate if trace element remobilisation upon permafrost thaw might be a tangible consequence of climate change.
Arsenic is a trace element and a metalloid which is prominently known as an environmental hazard. At present, rising health apprehensions are linked to emanating from a wide array of industrial, chemical, residential, agricultural, and technological sources, leading to extensive pollution of water, soil, and air ecosystems including flora, fauna and humans. It poses significant harm to biological organisms upon acute and chronic exposure. In this review, we delve into the reported experimental data that elaborates on arsenic as a toxicant, with particular emphasis on its occurrence, metabolism and diverse molecular mechanisms involved. It also includes the major molecular mechanisms leading to systemic toxicity with special emphasis on shedding light on the intricate ways it disrupts the nervous system.
The ecology of the Qinghai-Tibet Plateau is fragile, and the ecosystems in the region are difficult to remediate once damaged. Currently, landfilling is the mainstay of domestic waste disposal in China, and numerous, widely distributed county landfills exist. trace elements (TEs) in waste are gradually released with waste degradation and cannot be degraded in nature, affecting environmental quality and human health. To reduce the chance bias that exists in studies of individual landfills, we selected 11 representative county landfills in Tibet, total of 76 soil samples were collected, eight TEs (arsenic (As), mercury (Hg), chromium (Cr), copper (Cu), lead (Pb), cadmium (Cd), nickel (Ni), and zinc (Zn)) were determined, and analysed for the current status of pollution, risk to human health, and sources of TEs to explore the impact of the landfills. The results showed that only a few landfills had individual TEs exceeding the risk screening value of the Soil Environmental Quality Risk Control Standard for Soil Contamination (GB 15618-2018) (pH > 7.5). Most of the soils around the landfills had moderate levels of pollution, but some individual landfills had higher levels, mainly due to Cd and Hg concentrations. Source analysis showed that Hg originated mainly from atmospheric transport; the other TEs came mainly from the weathering of soil parent material and bedrock. The potential risk from TEs to human health was low, and the risk to children was greater than the risk to adults. Among the three exposure routes, oral ingestion resulted in the highest carcinogenic risk and noncarcinogenic risk, with a contribution rate of more than 95%. Among the TEs, Ni had the highest carcinogenic risk, followed by Cr and As, and As had the highest noncarcinogenic risk.
In this study, the multifaceted toxicity induced by high doses of the essential trace element molybdenum in Allium cepa L. was investigated. Germination, root elongation, weight gain, mitotic index (MI), micronucleus (MN), chromosomal abnormalities (CAs), Comet assay, malondialdehyde (MDA), proline, superoxide dismutase (SOD), catalase (CAT) and anatomical parameters were used as biomarkers of toxicity. In addition, detailed correlation and PCA analyzes were performed for all parameters discussed. On the other hand, this study focused on the development of a two hidden layer deep neural network (DNN) using Matlab. Four experimental groups were designed: control group bulbs were germinated in tap water and application group bulbs were germinated with 1000, 2000 and 4000 mg/L doses of molybdenum for 72 h. After germination, root tips were collected and prepared for analysis. As a result, molybdenum exposure caused a dose-dependent decrease (p < 0.05) in the investigated physiological parameter values, and an increase (p < 0.05) in the cytogenetic (except MI) and biochemical parameter values. Molybdenum exposure induced different types of CAs and various anatomical damages in root meristem cells. Comet assay results showed that the severity of DNA damage increased depending on the increasing molybdenum dose. Detailed correlation and PCA analysis results determined significant positive and negative interactions between the investigated parameters and confirmed the relationships of these parameters with molybdenum doses. It has been found that the DNN model is in close agreement with the actual data showing the accuracy of the predictions. MAE, MAPE, RMSE and R2 were used to evaluate the effectiveness of the DNN model. Collective analysis of these metrics showed that the DNN model performed well. As a result, it has been determined once again that high doses of molybdenum cause multiple toxicity in A. cepa and the Allium test is a reliable universal test for determining this toxicity. Therefore, periodic measurement of molybdenum levels in agricultural soils should be the first priority in preventing molybdenum toxicity.
Trace elements (TEs) in water are crucial parameters for assessing water quality. However, detailed studies are limited on TEs in the hydrological system of the Tibetan plateau (TP). Here, we sampled snow, river water, and groundwater in Yulong Snow Mountain (Mt. Yulong) region, southeast TP, in 2016 and analyzed the concentrations of nine TEs (namely Al, Mn, Fe, Cr, Ni, Cu, Zn, As, and Pb). In snow, the average concentrations of Fe, Zn, and Al were >10 mu g/L, whereas other elements, including Cr, Ni, Cu, As, Hg, and Pb, exhibited average concentrations <1 mu g/L. The concentrations of Al, Mn, Fe, Zn, and As were higher in rivers than in snow. According to enrichment factors (EFs), Zn concentration in snow was highly influenced by anthropogenic activities, whereas Mn, Fe, Cr, and As were uninfluenced. River and lake/reservoir water near human settlements were affected by anthropogenic activities. However, groundwater around Mt. Yulong is not contaminated yet. The increasing EFs in Mt. Yulong snowpit are consistent with those of southern TP snowpits, suggesting that the area has been affected by anthropogenic activities both from local emissions and long-distance transport of pollutants from South Asia. A conceptual model was proposed to show TEs in the water cycle. Although water quality is good overall in Mt. Yulong region, threats to the water environment still exit due to increasing anthropogenic activities and climate warming. The accelerated ablation of cryosphere due to climate warming could be a source of TEs in rivers and groundwater, which should be paid attention to in the future. (C) 2020 Elsevier B.V. All rights reserved.
South Asian pollutants can be transported and deposited via wet/dry deposition to the remote areas of the Himalayas and could pose a serious threat to the mountain ecosystems. Therefore, in order to understand the concentrations, fluxes, seasonal variation and origin of the mercury (Hg), major ions and trace elements, precipitation samples were collected during 2012-2013 from a data gap region, Jomsom, the high elevation semiarid mountain valley in the central Himalayas. The volume-weighted mean (VWM) concentrations of ions followed the order of Ca2+ > Mg2+ > Na+ > NH4+ > SO42- > Cl- > NO3- > K+. The concentration of Cd was lowest (0.07 mu g L-1) whereas that of Fe was the highest (1073.59 mu g L-1) in the precipitation samples. Wet deposition level of all the measured inorganic species was comparable to urban Lhasa but higher than those in remote alpine sites of the Tibetan Plateau (TP). This study shows that Hg and other inorganic constituents were higher in the non-monsoon season compared to monsoon due to enhanced washout of aerosols. Enrichment factor (EF), sea salt fraction, crustal and anthropogenic fractions, principal component analysis (PCA) and correlation coefficient analysis suggested that crustal dust and anthropogenic activities as the major sources of measured chemical species whereas the influence of sea-salt was minimal. In addition, local anthropogenic emissions were low suggesting that the majority of the pollutants could have been transported from the South Asian region to the high elevation mountains. Meanwhile, low precipitation and dry environment could have enhanced the concentrations of inorganic species in the arid region than other sites over the central Himalayas. This work adds new dataset of inorganic pollutants in wet precipitation and provides baseline information for an arid region environmental protection. However, there is a need for further long-term monitoring to understand the precipitation chemistry of the arid regions.
This study reports for the first time the content of trace elements and light-absorbing particles (LAPs) in snow samples collected from a Peruvian glacier (Huaytapallana). The sampling campaign was carried out monthly from November 2015 to March 2019. The trace elements content was quantified by inductively coupled plasma mass spectrometry, while LAPs were analyzed using the light absorption heating method. The chemical composition dataset was assessed by descriptive statistics and t-test for assessing dry season and wet season differences. In addition, enrichment factor (EF) and hierarchical cluster analysis (HCA) were employed to identify possible emission sources. The snow, ice, and aerosol radiative (SNICAR) model was used to measure the effect of LAPs on snow albedo and radiative forcing (RF). Based on analysis of EF and HCA, it was shown that Al, Ti, Si, Co, Ce, Sr, Mn, Mg, Ba and Na have mainly natural sources; K, Ca, Fe, Cu, Pb and As have a mixture of natural and anthropogenic sources, and Zn has anthropogenic source. SNICAR model results indicated that LAPs reduced the snow albedo by up 4.5 % in the dry season with RF values as high as 33 W/m(2). Therefore, we conclude that the presence of these particles substantially increases melt or sublimation rates of Peruvian glaciers.
The physical and chemical consequences of massive ground ice (wedges) melt upon permafrost thaw is one of the central issues of environmental research linked to climate warming in the Arctic. Little is known about the chemical properties of dispersed ground ice abundant throughout permafrost peatlands that can easily melt with increasing active layer thickness (ALT). This is especially pertinent in continental lowlands, that account for sizeable areas of the Arctic, and contain high amount of organic carbon in both solid (peat) and liquid (porewater) phases. Here we studied 8 peat cores (0-130 cm depth)-comprised of porewater from the active layer (0-45 cm) as well as ice dispersed in frozen peat (40-130 cm)-across a latitudinal profile of Western Siberia Lowland (WSL) extending from discontinuous into continuous permafrost zones. Dissolved Organic Carbon (DOC), alkali and alkaline-earth metals (Ca, Mg, Sr, Ba, Li, Rb, Cs), sulfate, phosphorus, some trace elements (Al, Fe, Mn, Zn, Ni, Co, V, As, Y, REE, Zr, Hf, U) were sizably [more than 3 times] enriched in peat ice compared to peat porewaters from the active layer. In most sampled cores, there was a local maximum of strong enrichment (up to factors between 14 and 58) in DOC, P, Ca, Mg, Mn, Fe, Sr, As located 30-50 cm below the active layer. This maximum likely occurred due to solute concentration during full freezing of the soil column during winter. There was a sizable correlation between DOC, Al, Fe and other major and trace element concentrations that suggests strong control of organic complexes and organo-mineral (Al, Fe) colloids on element migration throughout the peat profile. The pool of C, major cations and trace metals in peat ice (40-130 cm) was approximately 3-55 times higher than the pool of these elements in porewaters from the active layer (0-40 cm). A 1-m increase of the ALT over the next 100 years is capable of mobilizing 58 +/- 38 Tg of DOC from soil ice into the rivers and lakes of the WSL latitudinal belt (63-67 N). This fast lateral export of C (3.7 +/- 2.7 t C km(-2) y(-1)) may double current C yields in WSL rivers (3.4 +/- 1.3 t C km(-2) y(-1)). A strong increase (150-200%) in riverine export of Zn, P and Cs may also occur while other micronutrients (Fe, Ni, Co, Ba, Mo, Rb) and toxicants (Cd, As, Al) may be affected to a lesser degree (20-30% increase). We propose a global peat ice inventory in permafrost regions is essential for assessing the consequences of permafrost thaw on surface aquatic systems. (C) 2020 Elsevier Ltd. All rights reserved.
In order to determine the current levels, spatial distribution patterns, and potential pollution of trace elements (TEs) in the atmosphere of the Tibetan Plateau (TP), snow pit samples were collected in May 2016 from five TP glaciers: Qiyi (QY), Hariqin (HRQ), Meikuang (MK), Yuzhufeng (YZF), and Xiao-dongkemadi (XDKMD). Concentrations of 13 TEs (Al, Ba, Cd, Co, Cr, Cu, Fe, Li, Pb, Sb, Sr, U, and Zn) in the snow were measured. The spatial distribution patterns and depth profiles of TEs from the studies sites revealed that the influence of dust on TEs was more significant on the MK and YZF glaciers than on the QY, HRQ, and XDKMD glaciers. The spatial distributions of TE EFFe values differed from their concentrations, however. The enrichment factor (EF) values and concentrations of some TEs in the YZF, QY, and XDKMD glaciers revealed that the pollution levels of these elements were significantly lower than those found in previous research. Examination based on EFs, principal component analysis, as well as the calculated non-dust contributions of TEs, revealed that dust was the principal source for most TEs in all five glaciers, while biomass burning was another potential natural source for TEs in some glaciers, such as QY. In contrast, Cd, Ba, Sr, Cu, Pb, Zn, and Sb were occasionally affected by anthropogenic sources such as road traffic emissions, fossil fuel combustion, and mining and smelting of nonferrous metals in and beyond the TP. Air mass backward trajectories revealed that potential pollutants were transported not only from local sources but also from Xinjiang Province in northwestern China, as well as South Asia, Central Asia, the Middle East, and Europe. (c) 2020 Elsevier Ltd. All rights reserved.
In the boreal and subarctic zone, the moss and peat interactions with rainwater and snowmelt water in shallow surface ponds control the delivery of dissolved organic matter (DOM) and metal to the rivers and further to the Arctic Ocean. The transformation of peat and moss leachate by common aquatic microorganisms and the effect of temperature on DOM mineralization by heterotrophs remain poorly known that does not allow predicting the response of boreal aquatic system to ongoing climate change. We used experimental approach to quantify the impact of boreal aquatic bacteria P. reactans, and two culturable bacteria extracted from a thaw lake of the permafrost zone (Bolshezemelskaya tundra, NE Europe): Iodobacter sp. and cyanobacterial associate dominated by order Chroococcales (Synechococcus sp). The interaction of these bacterial cultures with nutrient-free peat and moss leachate was performed in order to (1) quantify the impact of temperature (4, 25 and 45 A degrees C) on peat leachate processing by heterotrophs; (2) compare the effect of heterotrophic bacteria and cyanobacterial associate on moss and peat leachate chemical composition, and (3) quantify the DOC and metal concentration change during cyanobacterial growth on leachate from frozen and thawed peat horizon and moss biomass. The efficiency of peat DOM processing by two heterotrophs was not modified by temperature rise from 4 to 45 A degrees C. The DOC concentration decreased by a factor of 1.6 during 3 days of moss leachate reaction with Iodobacters sp. or cyanobacterial associate at 25 A degrees C. The SUVA(245) increased twofold suggesting an uptake of non-aromatic DOM by both microorganisms. The growth of cyanobacteria was absent on peat leachate but highly pronounced on moss leachate. This growth produced tenfold decrease in P concentration, a factor of 1.5-2.0 decrease in DOC, a factor of 4 and 100 decrease in Fe and Mn concentration, respectively. Adsorption of organic and organo-mineral colloids on bacterial cell surface was more important factor of element removal from organic leachates compared to intracellular assimilation and/or Fe oxyhydroxide precipitation. Overall, we demonstrate highly conservative behavior of peat leachate compared to moss leachate in the presence of culturable aquatic bacteria, a lack of any impact of heterotrophs on peat leachate and their weak impact on moss leachate. A very weak temperature impact on DOM processing by heterotrophs and lack of difference in the biodegradability of DOM from thawed and frozen peat horizons contradict the current paradigm that the warming of frozen OM and its leaching to inland waters will greatly affect microbial production and C cycle. Strong decrease in concentration of P, Fe and Mn in the moss leachate in the presence of cyanobacterial associate has straightforward application for understanding the development of thermokarst lakes and suggests that, in addition to P, Fe and Mn may become limiting micronutrients for phytoplankton bloom in thermokarst lakes.