Thermochemical processing of biowaste generates renewable carbon-rich materials with potential agronomic uses, contributing to waste valorization. This study evaluates the application of hydrochar obtained from hydrothermal carbonization of food waste, those obtained by different post-treatments (washing, aging, and thermal treatment), as well as biochar obtained by pyrolysis as soil amendments. For this purpose, the effect of char addition (1-10 wt% d.b.) on a marginal agricultural soil on germination and growth of Solanum lycopersicum (tomato) plants was assessed. All the hydrochars exhibited a chemical composition suitable for agronomic use, characterized by high nutrient content, abundant organic matter, and low concentration of phytotoxic metals. In contrast, biochar exceeded the permissible limits for Cr, Cu, and Ni concentrations rendering it unsuitable for application to agronomic crops. The high temperature of thermal post-treatment and pyrolysis favored mineral and heavy metal concentration while washing significantly reduced nutrient content (N, S, P, K, Mg) along with the electrical conductivity. The addition of biochar or both washed and thermally post-treated hydrochar negatively affected tomato growth. Reduced chlorophyll content was associated with the decreased expression of genes encoding enzymes involved in antioxidant metabolism. This led to photosynthetic membrane damage, as evidenced by chlorophyll fluorescence-related parameters. Conversely, the addition of aged (<= 5 wt %) and fresh (1-10 wt%) hydrochars increased both germination and plant growth compared to unamended soil, indicating that hydrochar from food waste does not require additional post-treatments to be used as a soil amendment.
Mitigating the co-existence of environmental stresses on crop plants necessitates the development of integrated, eco-friendly, and sustainable approaches to alleviate plant stress responses. This study represents the first attempt to mitigate the toxic impact of prevalent pollutant (salinity) and an emergent plastic manufacturing pollutants (bisphenol A, BPA) using the polyamine (cadaverine).Tomato plants, treated with or without cadaverine, were subjected to NaCl salinity (120 mM), BPA (375 mg kg(-1) soil), and their combinations compared to non-stressed control plants examining morphological, physiological, metabolic, and molecular responses. After 10 days of transplanting, tomato plants under combined stress were unable to survive without cadaverine application. However, cadaverine spraying mitigated the damaging effects of both single and combined stresses under short- and long-term exposure, enabling stressed plants to endure the conditions and complete their life cycles. Cadaverine efficiently restrained the reduction in chlorophylls, carotenoids, and cytosolutes under applied stresses compared to the stressed plants. Cadaverine also increased alpha-tocopherol content (by 171 and 53 %) and enhanced the activity of polyphenol oxidase (by 26 and 32 %), glutathione s-transferases (by 18 and 39 %), superoxide dismutase (by 23 and 46 %), and phenylalanine ammonia-lyase (by 9 and 25 %), under BPA and salinity stress, respectively. Thus, cadaverine ameliorated the oxidative and nitrosative burst induced by BPA or salinity, respectively by declining hydroxyl radical (by 28 % and 20 %), superoxide anion (by 73 % and 74 %), nitric oxide (by 60 and 65 %), lipid peroxidation (by 35 % and 54 %), and lipoxygenase activity (by 74 and 68 %). Moreover, cadaverine enhanced the expression of defence-related genes, including polyphenol oxidase, tubulin, and thaumatin-like protein, and reduced the uptake of BPA in the tomato's roots while promoting its metabolism in leaves and fruits. This ensured the safety of the harvested fruits. By mitigating stress, improving plant resilience, and limiting pollutant accumulation, cadaverine presents significant potential for sustainable agricultural practices and food safety. These findings offer valuable insights into the role of cadaverine in managing abiotic stress and safeguarding crop health in environmentally challenging conditions.
Biodegradable mulch films are essential for reducing plastic pollution in agriculture; however, current production methods often rely on complex and costly chemical processes. This study presents an innovative, ecofriendly approach to developing fully biodegradable mulch films using untreated vegetable stalks and sodium alginate through a simple blending method. By eliminating the need for pretreatment, this process significantly reduces energy consumption and maximizes agricultural waste utilization. The optimized film formulation (30 % vegetable stalk, 3 % solution, 40 % glycerin) demonstrated excellent mechanical and barrier properties, including tensile strength (6.8 MPa), elongation at break (29 %), water vapor permeability (1.88 x 10-12 g & sdot;cm-1 & sdot;Pa-1 & sdot;s-1), and UV-blocking efficiency (98.5 %), and thermal insulation and moisture retention properties. Rheological analysis showed that the addition of vegetable stalks impacted the film-forming solution's properties, enhancing processing and application performance. Additionally, the films facilitated seed germination and maintained functionality on the surface of moist soil, while rapidly degrading when buried in moist soil. Life Cycle Assessment confirmed that the biodegradable films significantly reduce environmental impacts, supporting their potential for widespread adoption in sustainable agricultural practices. This study provides a scalable and cost-effective strategy for converting agricultural residues into high-performance biodegradable films, addressing the need for sustainable solutions in agriculture and environmental protection.
Introduction Botrytis cinerea is one of the pathogenic fungi causing major problems worldwide in crops such as tomato. Some Plant Growth-Promoting Rhizobacteria (PGPR) can activate induced systemic resistance (ISR) pathways in crops, reducing the need for antifungals.Methods Three strains belonging to the species Peribacillus frigoritolerans (CD_FICOS_02), Pseudomonas canadensis (CD_FICOS_03), and Azotobacter chroococcum (CD_FICOS_04), which exhibit outstanding PGPR properties, were evaluated for their ability to protect tomato plants against B. cinerea infection by ISR via soil inoculation.Results The strains CD_FICOS_02 and CD_FICOS_03 reduced B. cinerea incidence and plant oxidative stress. The first strain mainly increased the expression of genes related to the salicylic acid pathway, while the second increased the expression of genes related to the jasmonic acid/ethylene hormonal pathway, indicating preferential ISR activation by each of these pathways. In addition, CD_FICOS_03 was able to increase the root and aerial biomass production of infected plants compared to the control. Interestingly, although the strain CD_FICOS_04 did not reduce the damage caused by B. cinerea, it increased the biomass of infected plants.Discussion Our results suggest that the best strategy for biocontrol of B. cinerea is to combine the ability to promote plant growth with the ability to induce systemic resistance, as demonstrated by strains P. frigoritolerans CD_FICOS_02 and P. canadensis CD_FICOS_03.
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici, threatens global tomato production, with losses reaching 80%. Although chemical fungicides are effective, their prolonged use risks resistant strains, reduces soil biodiversity, and causes environmental damage, highlighting the urgent need for ecofriendly alternatives. This study investigated the viability of Salvia officinalis (sage) methanolic extract as a biocontrol agent against Fusarium wilt (FW), employing a comprehensive approach that incorporates in vitro, in vivo, and molecular docking techniques. Four distinct isolates of F. oxysporum were identified through molecular techniques, and their virulence was assessed by examining the presence of tomatinase genes. The antifungal properties of S. officinalis extract were found to be compelling, with a total phenolic content of 64.15 mg GAE/g and a remarkable antioxidant activity of 97.04%. In laboratory tests, S. officinalis exhibited potent antifungal activity, inhibiting mycelial growth by between 52.00% and 88.67% at a concentration of 20 mg/ml. Additionally, in vivo experiments demonstrated a significant reduction in disease severity in treated tomato plants. Molecular docking analyses revealed strong binding affinities between key phytochemicals in the extract and target receptors such as tomatinase, highlighting the potential of the extract as a sustainable and effective alternative to chemical fungicides for managing FW in tomato crops.
Heavy metal (HM) pollution in agricultural soils threatens plant growth and food security, underscoring the urgency for sustainable and eco-friendly solutions. This study investigates the potential of endophytic fungi, Fusarium proliferatum SL3 and Aspergillus terreus MGRF2, in mitigating nickel (Ni) and cadmium (Cd) stress in Solanum lycopersicum (tomato). These fungi were evaluated for their plant growth-promoting traits, including the production of indole-3-acetic acid (IAA) and siderophores, offering a sustainable strategy for alleviating HM toxicity. Inoculation with SL3 and MGRF2 significantly reduced metal accumulation in plant tissues by enhancing metal immobilization and modifying root architecture. Microscopic analysis revealed that fungi protected root epidermal cells from Ni- and Cd-induced damage, preserving cellular integrity and preventing plasmolysis. Fungal-treated plants exhibited improved growth and biomass, with SL3 demonstrating superior Cd stress mitigation and MGRF2 excelling under Ni stress. Photosynthetic pigment levels, including chlorophyll-a and carotenoids, were restored, highlighting the role of fungi in maintaining photosynthetic efficiency. Antioxidant activity was also modulated, as reduced glutathione (GSH) levels and increased flavonoid production were observed, contributing to enhanced oxidative stress management. Hormonal profiling revealed that fungal inoculation balanced stress-induced hormonal disruptions, with lower abscisic acid (ABA) levels and improved salicylic acid (SA) and gibberellic acid (GA) pathways. These changes facilitated better stress adaptation, enhanced nutrient uptake, and improved physiological performance. qRT-PCR analysis further revealed differential gene expression patterns, while antioxidant enzyme activity strengthened the plants' defense against HMinduced oxidative damage. Multivariate analyses highlighted shoot and root traits as critical indicators of resilience, with fungal inoculation driving substantial improvements. These findings demonstrate the potential of SL3 and MGRF2 as eco-friendly bioinoculants, offering a sustainable and cost-effective approach to reducing HMs toxicity in contaminated soils while enhancing crop productivity. This work highlights the promising role of plant-microbe interactions in advancing sustainable agriculture and addressing the challenges posed by heavy metal pollution.
The tomato is among the crops with the most extensive cultivated area and greatest consumption in our nation; nonetheless, secondary salinization of facility soil significantly hinders the sustainable growth of facility agriculture. Melatonin (MT), as an innovative plant growth regulator, is essential in stress responses. This research used a hydroponic setup to replicate saline stress conditions. Different endogenous levels of melatonin (MT) were established by foliar spraying of 100 mu molL-1 MT, the MT synthesis inhibitor p-CPA (100 mu molL-1), and a combination of p-CPA and MT, to investigate the mechanism by which MT mitigates the effects of salt stress on the photosynthetic efficiency of tomato seedlings. Results indicated that after six days of salt stress, the endogenous MT content in tomato seedlings drastically decreased, with declines in the net photosynthetic rate and photosystem performance indices (PItotal and PIabs). The OJIP fluorescence curve exhibited distortion, characterized by anomalous K-band and L-band manifestations. Exogenous MT dramatically enhanced the gene (TrpDC, T5H, SNAcT, and AcSNMT) expression of critical enzymes in MT synthesis, therefore boosting the level of endogenous MT. The application of MT enhanced the photosynthetic parameters. MT treatment decreased the fluorescence intensities of the J-phase and I-phase in the OJIP curve under salt stress, attenuated the irregularities in the K-band and L-band performance, and concurrently enhanced quantum yield and energy partitioning ratios. It specifically elevated phi Po, phi Eo, and psi o, while decreasing phi Do. The therapy enhanced parameters of both the membrane model (ABS/RC, DIo/RC, ETo/RC, and TRo/RC) and leaf model (ABS/CSm, TRo/CSm, ETo/CSm, and DIo/CSm). Conversely, the injection of exogenous p-CPA exacerbated salt stress-related damage to the photosystem of tomato seedlings and diminished the beneficial effects of MT. The findings suggest that exogenous MT mitigates salt stress-induced photoinhibition by (1) modulating endogenous MT concentrations, (2) augmenting PSII reaction center functionality, (3) safeguarding the oxygen-evolving complex (OEC), (4) reinstating PSI redox potential, (5) facilitating photosynthetic electron transport, and (6) optimizing energy absorption and dissipation. As a result, MT markedly enhanced photochemical performance and facilitated development and salt stress resilience in tomato seedlings.
Soil salinity is a major abiotic stress causing severe damage to plants. Thus, proper management approaches need to be developed to lessen the detrimental effect of salinity on crop growth and productivity. The objective of this study was to investigate the potential role of exogenous salicylic acid (SA) and potassium (K+) in mitigating the adverse effects of salt stress on tomato. Salt-stressed tomato seedlings Solanum lycopersicum L. cv. Agata were exposed to 0.1 mM SA and 5 mM K+, applied individually or simultaneously for two weeks. Obtained results showed that salt stress resulted in reduced growth rate associated with accumulation of Na+ ions, reduced K+ levels, lower K+/Na+ ratio, increased oxidative damage, reduced total chlorophyll and carbohydrate contents as well as disturbed proline accumulation and disrupted antioxidant system. Nevertheless, after SA and K+ supplementation, total chlorophyll, K+, total proteins, total carbohydrates, and proline contents as well as K+/Na+ ratio were significantly increased. Additionally, exogenous SA and K+ treatments enhanced the non-enzymatic and enzymatic antioxidant system and ensured better oxidative stress tolerance, as indicated by reduced H2O2 production and membrane lipid peroxidation, resulting in an increased membrane stability index. These effects were further enhanced by the simultaneous application of SA and K+, resulting in a better growth of salt-stressed tomato seedlings compared to single applications of these two growth regulators. Taken together, the results of the current study provide evidence that SA and K+ may interact to counteract the adverse effects of salt stress on the growth of tomato seedlings by improving osmotic and ionic homeostasis and upregulating the antioxidant defense system. Therefore, the simultaneous application of SA and K+ may be suggested as a promising approach for beneficial tomato growth at the seedling stage under salt-affected soil conditions.
The consumption of tomatoes has been associated with diminishing the risk of several lethal diseases, e.g., heart attack and cancer. This is because tomato contains high antioxidants that have been shown to protect against oxidative damage in numerous empirical and epidemiological studies. Considering the health benefits, more emphasis should be given to produce organic tomatoes. Tomatoes have been ranked as the most important fruit and vegetable in Western diets as essential source of antioxidants such as lycopene, beta-carotene, phenols, vitamin E, and vitamin C. Environmental conditions and agricultural practices are key factors that affect the quantities of these compounds available in tomato. Therefore, controlling the environmental conditions, such as water availability, temperature, light, saline soil, and agricultural practices (fertilization practices, harvesting, and food storage) are valuable tools to enhance the nutritional value of tomato fruits organically. Although, the quantitative and qualitative contents of health-promoting compounds in vegetables and fruits depend on their genetic predispositions. Agricultural practices and different environmental condition have broad effects on the nutraceutical compounds. Thus, this present study emphasizes on enhancing tomato nutrition through improved agricultural practices and optimized farming, especially in saline and water-deficit conditions. This organic-oriented strategy may counteract the scepticism caused by genetically modified tomatoes (GMOs) and will prompt further exploration in future studies.
The productivity of tomato fruit on the western shore of Lake Abaya in Ethiopia was severely hindered by saline-sodic damage. This study aimed to assess the impact of applying gypsum and adopting soil mulching agricultural technology to improve the issues of salt-affected soil in the region. The treatments consisted of a control group (T1), mulching (T2), gypsum application (T3), and a combination of gypsum (half level) and mulching (T4). Application rates of gypsum and straw mulching were 14.5 and 15 tons/ha, respectively. The mean total seasonal crop water consumptions of tomatoes were 378 mm (non-mulching) and 333.02 mm (mulching). Straw mulching saved an average of 13.2% of soil water compared with non-mulching treatments. At the end of the growing season, exchangeable sodium percentage was decreased by 42.3% (T2), 38.1% (T3), and 43.8% (T4) compared with control T1. The pH levels at the experimental site experienced reductions of 15.1% (T2), 1.1% (T3), and 14% (T4) compared with T1. The soil electric conductivity of the soil at the end of the tomato growing period was decreased by 59.6% (T2), 19.2% (T3), and 46.2% (T4). The average land productivity of tomatoes in the current study was 14.9(c )tons/ha (T1), 16.2(b) tons/ha (T2), 15.0(c )tons/ha (T3), and 18.6a tons/ha (T4). The average water productivity of tomatoes in the current study was 5.5c kg/m(3) (T1), 7.2(b )kg/m(3) (T2), 6.5 (c) kg/m(3) (T3), and 7.8a kg/m(3) (T4). The benefit-cost ratios for T1, T2, T3, and T4 were 1.67, 2.2, 1.78, and 2.4, respectively. The optimal strategy for mitigating saline-sodic soil and ensuring sustainable tomato production involves applying gypsum at half the recommended level along with implementing straw mulching.