Soil salinity hampers the survival and productivity of crops. To minimize salt-associated damages in plant, better salt management practices in agriculture have become a prerequisite. Seed priming with different halo-agents is a technique, which improves the primed plant's endurance to tackle sodium. Salt tolerance is achieved in tolerant plants through fundamental physiological mechanisms- ion-exclusion and tissue tolerance, and salt-tolerant plants may (Na+ accumulators) or may not (Na+ excluders) allow sodium movement to leaves. While Na+ excluders depend on ion exclusion in roots, Na+ accumulators are proficient Na+ managers that can compartmentalize Na+ in leaves and use them beneficially as inexpensive osmoticum. Salt-sensitive plants are Na+ accumulators, but their inherent tissue tolerance ability and ion-exclusion process are insufficient for tolerance. Seed priming with different halo-agents aids in 'rewiring' of the salt tolerance mechanisms of plants. The resetting of the salt tolerance mechanism is not universal for every halo-agent and might vary with halo-agents. Here, we review the physiological mechanisms that different halo-agents target to confer enhanced salt tolerance in primed plants. Calcium and potassium-specific halo-agents trigger Na+ exclusion in roots, thus ensuring a low amount of Na+ in leaves. In contrast, Na+-specific priming agents favour processes for Na+ inclusion in leaves, improve plant tissue tolerance or vacuolar sequestration, and provide the greatest benefit to salt-sensitive and sodium accumulating plants. Overall, this review will help to understand the underlying mechanism behind plant's inherent nature towards salt management and its amelioration with different halo-agents, which helps to optimize crop stress performance. Understanding plants' inherent response towards the ion- Na+ and selection of priming agents, both are complementary for optimization of crop performance under stress.
Rice (Oryza sativa L.) is a crucial crop contributing to global food security; however, its production is susceptible to salinity, a significant abiotic stressor that negatively impacts plant germination, vigour, and yield, degrading crop production. Due to the presence of exchangeable sodium ions (Na+), the affected plants sustain two-way damage resulting in initial osmotic stress and subsequent ion toxicity in the plants, which alters the cell's ionic homeostasis and physiological status. To adapt to salt stress, plants sense and transfer osmotic and ionic signals into their respective cells, which results in alterations of their cellular properties. No specific Na+ sensor or receptor has been identified in plants for salt stress other than the SOS pathway. Increasing productivity under salt-affected soils necessitates conventional breeding supplemented with biotechnological interventions. However, knowledge of the genetic basis of salinity stress tolerance in the breeding pool is somewhat limited because of the complicated architecture of salinity stress tolerance, which needs to be expanded to create salt-tolerant variants with better adaptability. A comprehensive study that emphasizes the QTLs, genes and governing mechanisms for salt stress tolerance is discussed in the present study for future research in crop improvement.