Chilled meat is prone to microbial contamination during storage, resulting in a shortened shelf life. This study developed multifunctional biodegradable aerogel with water absorption, antibacterial, and sustained release properties as a preservation pad for meat, using corn straw cellulose nanocrystals (CSCNCs) and acetylated starch (AS) as the structural skeleton and thymol (TMO) nanoemulsions as antimicrobials. The effects of different mass ratios of CSCNCs/AS on the morphology, structure, physical properties, and release behavior of aerogels were systematically analyzed. Additionally, their antibacterial properties, biocompatibility, and biodegradability were investigated. The results showed that the aerogels with CSCNC/AS mass ratio of 1:5 had a tailored structure for loading TMO nanoemulsions, as well as excellent water absorption, mechanical properties, and thermal stability. Due to strong hydrogen bonding and a porous structure, the TMO in the aerogels was continuously and uniformly released into high-water-activity and fatty food simulants, mainly controlled by Fickian diffusion. Furthermore, it exhibited superior antibacterial properties and biocompatibility. The application of aerogels for chilled beef preservation extended the shelf life from 8 days to approximately 12 days, which was superior to commercially available preservation pads. Notably, the aerogels exhibited superior biodegradability in soil. Therefore, the prepared aerogel preservation pads showed great potential in preserving chilled meat.
The objective of this study was to produce new active and intelligent high performance colorimetric films based on cellulose acetate (CA), and to evaluate the synergistic effect of thymol (THY) and anthocyanin (ANT). The colour films showed significant reactivity to pH change, and the films became thicker in the presence of glycerol (0.200 +/- 0.05). FTIR and SEM images showed a homogeneous distribution and new interactions created between THY, ANT and CA, which modified the thermal properties. This behaviour was also confirmed by XRD analysis, which showed a reduction in film crystallinity with increasing anthocyanin concentration. In addition, the incorporation of ANT improved the mechanical properties by reducing the tensile strength (0.075 +/- 0.021 MPa), the biodegradability of the films in the soil after 60 days and also the water vapor transmission rate (14.81 g mm-2 h-1). The films showed synergistic antibacterial activity and the application trials showed colour changes that were highly visible to the naked eye, with the deterioration of the fish, suggesting a promising application for these films as an indicator of fish freshness.
This study targets explicitly finding an alternative to petroleum-based plastic films that burden the environment, which is a high priority. Hence, polymeric films were prepared with carboxymethyl cellulose (CMC) (4%), pectin (2%), and polyhydroxybutyrate (PHB) (0.5%) with different concentrations of thymol (0.3%, 0.9%, 1.8%, 3%, and 5%) and glycerol as a plasticizer by solution casting technique. The prepared films were tested for mechanical, optical, antimicrobial, and antioxidant properties. Film F5 (CMC + P + PHB + 0.9%thymol) showed an excellent tensile strength of 15 MPa, Young's modulus of 395 MPa, antioxidant activity (AA) (92%), rapid soil biodegradation (21 days), and strong antimicrobial activity against bacterial and fungal cultures such as Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus. The thymol content increase in films F6 (1.8%), F7 (3%), and F8 (5%) displayed a decrease in mechanical properties due to thymol's hydrophobicity. For shelf life studies on tomatoes, F2, a film without thymol (poor antimicrobial and antioxidant activities), F5 (film with superior mechanical, optical, antimicrobial, and antioxidant properties), and F7 (film with low mechanical properties) were selected. Film F5 coatings on tomato fruit enhanced the shelf life of up to 15 days by preventing weight loss, preserving firmness, and delaying changes in biochemical constituents like lycopene, phenols, and AA. Based on the mechanical, optical, antimicrobial, antioxidant, and shelf life results, the film F5 is suitable for active food packaging and preservation.