This study examines the fragility response of an earthen embankment supported on a liquefiable deposit subjected to pulse and nonpulse ground motions. Fragility curves are developed based on two key parameters, namely, median seismic intensity and overall variability in the analysis. Such curves represent the vulnerability of an earthen embankment under two distinct types of ground motions. Numerical simulations are performed using two-dimensional finite-element analysis under plane strain conditions. The saturated sandy deposits in the foundation are modeled with the UBC3D-PLM constitutive model and calibrated with appropriate parameters. Two damage indexes are introduced: normalized embankment settlement and lateral embankment deformation. Nonlinear incremental dynamic analysis is performed for various ground motions, and fragility parameters are developed for different damage levels. The results show that pulse-type earthquakes cause more serious damage to earthen structures than nonpulse-type earthquakes, increasing the vulnerability. Further, the liquefiable layer thickness in the foundation soil plays a significant role in the vulnerability assessment of the embankment. The foundation liquefiable layer with less thickness may lead to an early onset of damage and lower the seismic demand on the embankment structure at lower damage levels. With an increase in the layer thickness, seismic demand reduces, with the drainage path playing a critical role.
Unlike uniform soils, soft clays with sand interlayers in coastal soft clays, can affect their mechanical properties, potentially impacting underground-construction safety and stability. Consolidated undrained cyclic triaxial tests were conducted to study the dynamic properties and deformation behavior of clay, focusing on how the thickness ratio between the sand and clay layers and the cyclic-stress ratio influence the pore pressure, axial strain, shear-modulus ratio, and normalized damping ratio. The results indicate that higher thickness ratios and cyclic-stress ratios lead to a faster decay of the shear-modulus ratio, quicker increases in pore pressure, faster strain accumulation, and fewer cycles to failure. The normalized damping ratio has three different forms: decreasing, decreasing then increasing, and increasing. However, at a cyclic-stress ratio of 0.2 and thickness ratio of 0.25, the samples exhibit better dynamic characteristics. Soft clay with sand layers exhibits characteristics in line with the stability theory. At low thickness and cyclic-stress ratios, purely elastic and elastically stable phases are observed. As the thickness and cyclic-stress ratios increase, it transitions to plastic stability and incremental failure.
Carbon capture and storage plus compressed CO2 energy storage (CCS+CES) is gradually moving from conceptual design to feasible studies. Underground salt caverns are ideal locations for implementing CO2 geological storage. However, earthquakes are among the natural disasters that impact underground salt cavern safety. Based on plastic deformation combined with salt rock self-healing characteristics, this study demonstrates that largescale salt-cavern CO2 storage facilities are repairable under moderate seismic. This study evaluates the impact of salt layers on seismic wave propagation using site transfer functions, while seismic acceleration histories are simulated using the trigonometric series method. Based on the typical operating conditions of CCS+CES, a finite element model is established to analyze the seismic performance of CO2 storage under different salt rock layer thicknesses and internal pressures for magnitude 5 earthquakes and temperatures of 40 degrees C. Then, this study proposes safety evaluation criteria and self-healing criteria for the salt cavern under seismic loading. A comparative analysis is conducted on the damage and self-healing potential of the salt cavern under different conditions. The results show that thicker salt layers result in smaller displacement and stress in the cavern, while higher internal pressure leads to a more significant increase in displacement and stress. According to the failure criteria for salt caverns, the likelihood of failure under moderate seismic loads is low. As a comparison, the seismic response of the salt cavern and the salt cavern with an interlayer under a magnitude 7 earthquake is also studied. The results show that under strong seismic loads, both the salt cavern and the salt cavern with an interlayer are likely to experience failure.
This study aims to optimize geotextile placement depth to enhance subgrade strength and achieve sustainable pavement design. Laboratory tests were conducted to characterize the soil and evaluate the effect of geotextile placement at depths of 3/4D, 1/2D, and 1/4D (where D is the total specimen depth). California bearing ratio (CBR) tests revealed that positioning the geotextile at 0.3D significantly improves subgrade strength, yielding a 78.08% increase in soaked CBR (from 5.84 to 10.4) and a 136.56% improvement in unsoaked conditions (from 3.72 to 8.8). Pavement analysis using IITPAVE software further demonstrated that geotextile placement at 0.3D effectively reduces fatigue and rutting strains, allowing reductions in pavement layer thicknesses-16.67% for bituminous concrete (BC) and dense bituminous macadam (DBM), 38.18% for water bound macadam (WBM), and 25% for granular sub-base (GSB). These optimizations lead to a cost saving of Indian Rupee36,06,610 ($42,430) per kilometer. The findings highlight the practical and economic benefits of placing geotextile at 0.3D depth (150 mm for a 500 mm subgrade), offering improved pavement performance, material savings, and enhanced sustainability. This research benefits pavement engineers, contractors, and transportation agencies by offering a sustainable, cost-efficient design strategy. Additionally, the findings provide a foundation for future research into geosynthetic reinforcement techniques under varying soil conditions, supporting the development of resilient, eco-friendly pavements.
To investigate the influence of the filling thickness and internal water pressure on the stability of a water supply pipeline, a typical pipeline of the Sun Mountain Water Supply Project is selected as the research object. A numerical simulation method is adopted to establish a three-dimensional finite element model integrating a double-line pipeline-artificial fill-foundation to study the influence of different single-layer filling thicknesses and internal water pressures on the mechanical properties of the double-line pipeline. The results of the study show that the relative error between the intrinsic mode of the finite element model of the double-line pipeline and the frequency identified by the dispersion entropy variational mode decomposition (DVMD) method on the measured vibration signals is only 1.55%, which confirms the validity of the finite element model and the accuracy of the results. With increasing soil filling and increasing single-layer filling thickness, the vertical displacement of the double-line pipe gradually increases, with a maximum value of 12.24 mm. With increasing single-layer filling thickness, the rate of increase in the vertical displacement of the double-line pipe increases. With increasing soil filling, the tensile and compressive stresses on the double-line pipe increase gradually, with maximum values of 0.148 MPa and 0.568 MPa, respectively. When the number of cycles is the same, the tensile and compressive stresses of the pipe sheet increase with increasing single-layer filling thickness. When the internal water pressure is 0.6 MPa, the trends of the inner and outer circumferential deformation and tensile and compressive stresses of the left and right lines of the pipes are basically the same. The outer stresses are lower than the inner stresses, among which the tensile stresses are reduced by 25% and 20.1%, and the compressive stresses are reduced by 16% and 18.2%, respectively. Under the joint action of the earth pressure and internal water pressure, the deformation of the double-line pipeline and the compressive stress tended to decrease and then increase, and the tensile stress gradually increased. The research results provide a theoretical reference and basis for similar water supply pipeline projects.
The extent of wildfires in tundra ecosystems has dramatically increased since the turn of the 21st century due to climate change and the resulting amplified Arctic warming. We simultaneously studied the recovery of vegetation, subsurface soil moisture, and active layer thickness (ALT) post-fire in the permafrost-underlain uplands of the Yukon-Kuskokwim Delta in southwestern Alaska to understand the interaction between these factors and their potential implications. We used a space-for-time substitution methodology with 2017 Landsat 8 imagery and synthetic aperture radar products, along with 2016 field data, to analyze tundra recovery trajectories in areas burned from 1953 to 2017. We found that spectral indices describing vegetation greenness and surface albedo in burned areas approached the unburned baseline within a decade post-fire, but ecological succession takes decades. ALT was higher in burned areas compared to unburned areas initially after the fire but negatively correlated with soil moisture. Soil moisture was significantly higher in burned areas than in unburned areas. Water table depth (WTD) was 10 cm shallower in burned areas, consistent with 10 cm of the surface organic layer burned off during fire. Soil moisture and WTD did not recover in the 46 years covered by this study and appear linked to the long recovery time of the organic layer.
The widespread distribution of riprap in estuarine mudflats has brought significant challenges to the penetration construction of steel casings. To reveal the effects of casing length, diameter and wall thickness on the stress and deformation, as well as the deformation characteristics and mechanical behaviors of the steel casing during the sinking process, the paper utilizes finite element method to construct a three-dimensional numerical model of the collision between steel casings and riprap in mudflat. The research results indicate that longer steel casing has better crushing effect on the riprap, smoother deflection curve of the casing body and smaller deformation at the casing end under the same casing diameter and wall thickness conditions. Under the same casing length and wall thickness conditions, the steel casing with a larger diameter has a better crushing effect on the riprap and smaller deformation at the casing end. As the casing diameter increases, the stress values of S11 and S33 in the soil at the casing end gradually decrease, and the range of stress concentration gradually increases. This study can provide a theoretical basis for the design and construction of steel casings in the riprap environment of the mudflat near the estuaries.
Offshore foundations usually experience long-term cyclic loading, where the weakly bound water at the soil-structure interface can be transformed into free water. The free water enriched at the soil-structure interface would influence the mechanical characteristics of the soil near the interface, weakening the interface strength and posing a significant threat to the safety and stability of offshore foundations. This study proposed a novel concept, i.e. the characteristic water film thickness, to quantify the enrichment degree of water film at the soil-structure interface under cyclic loading. A series of cyclic shearing tests were carried out by using self-developed cyclic loading equipment combined with a small constant temperature centrifuge. The influence of different clay and salt contents on the characteristic water film thickness was investigated and analyzed. It was found that both the kaolin and salt contents significantly impacted the characteristic water film thickness, where it was positively correlated with the kaolin content while negatively correlated with the salt content. The research outcome enriched the understanding of the weakening mechanism underlying the load and deformation transfer between soil-structure interface.
Whilst permafrost change is widely concerned in the context of global warming, lack of observations becomes one of major limitations for conducting large-scale and long-term permafrost change research. Reanalysis/assimilation data in theory can make up for the lack of observations, but how they characterize permafrost extent and active layer thickness remains unclear. Here, we investigate the near-surface permafrost extent and active layer thickness characterized by seven reanalysis/assimilation datasets (CFSR, MERRA-2, ERA5, ERA5-Land, GLDAS-CLSMv20, GLDAS-CLSMv21, and GLDAS-Noah). Results indicate that most of reanalysis/assimilation data have limited abilities in characterizing near-surface permafrost extent and active layer thickness. GLDAS-CLSMv20 is overall optimal in terms of comprehensive performance in characterizing both present-day near-surface permafrost extent and active layer thickness change. The GLDAS-CLSMv20 indicates that near-surface permafrost extent decreases by -0.69 x 106 km2 decade-1 and active layer deepens by 0.06 m decade-1 from 1979 to 2014. Change in active layer is significantly correlated to air temperature, precipitation, and downward longwave radiation in summer, but the correlations show regional differences. Our study implies an imperative to advance reanalysis/assimilation data's abilities to reproduce permafrost, especially for reanalysis data.
Noida, located within India's National Capital Region and near the tectonically active Himalayan region, is highly susceptible to seismic activity. Past moderate to high-intensity seismic events emphasize the need for detailed subsurface characterization to enhance seismic hazard assessments. This study investigates seismic site effects in Noida using microtremor measurements and the Nakamura technique to develop spatial distribution maps for seismic amplification, fundamental frequency, and seismic vulnerability index. A total of 129 microtremor data points were collected, with 54 meeting the SESAME criteria for reliable Horizontal-to-Vertical Spectral Ratio (HVSR) analysis. The analysis reveals that the predominant frequency at most sites falls within the range of 0.63-1.10 Hz, indicating the widespread presence of thick, soft sediments in the area. To avoid structural damages caused by the resonance of soil and structure and a table is prepared to showcase the approximate building frequency of various storey in order to avoid soil-building resonance phenomenon. The maximum amplification (A(0)) observed ranges from 4.53 to 5.17 at a few sites, whereas the majority of the study area experiences low to moderate amplification. The calculated seismic vulnerability index (K-g) for the 54 studied locations ranges from 2.27 to 23.60, with higher values found in regions with soft alluvial deposits, identifying them as fragile zones likely to suffer infrastructure damage during an earthquake. Lower K-g values correspond to areas with stiffer substrates. This study provides a preliminary assessment for urban planning and highlights the need for further research into the socio-economic and structural seismic vulnerabilities of the Noida region.