The effect of the load level on long-term thermally induced pile displacements and the impact of cyclic thermal loads on the bearing capacity of energy piles are investigated via a full-scale in situ test in Delft, The Netherlands. The pile was loaded to a specific target of 0, 30, 40, or 60% of its calculated ultimate bearing capacity. At the end of each loading step, up to ten cooling-natural heating cycles were applied. The pile behavior during monotonic cooling and cyclic cooling-natural heating in terms of the displacement along the pile is reported, with a focus on permanent displacements. During monotonic (pile/ground) cooling, a settlement of the pile head and an uplift of the pile segment near the pile tip were observed in all four tests. In addition, under higher mechanical load, the pile head displacement was larger while the uplift was lower due to the imposed mechanical load. During cyclic thermal load, under zero mechanical load, pile head displacement was fully reversible while permanent uplift of the lowest pile segment was observed and attributed mainly to the permanent dragdown of the surrounding soil. Under moderate mechanical loads (30 and 40%), thermal cycles induced an irreversible pile head settlement, which stabilized with an increasing number of cycles. In addition, a permanent pile settlement along the pile was observed at the end of these tests. Under high mechanical load (60%), the irreversible settlement along the pile continued to increase with only a slight reduction in rate, being higher compared to moderate mechanical loads. In this test, a normalized pile head settlement of 0.124% was observed after ten thermal cycles. The permanent settlement of the pile under thermo-mechanical loads was mainly attributed to the contraction of sand beneath the pile tip and thermal creep at the soil-structure interface. The pile bearing capacity was observed to increase after thermo-mechanical tests, mainly due to the residual/plastic pile head displacement, which in turn densified sand leading to an increase in tip resistance.
Numerous full-scale in situ tests have been conducted to assess the effect of thermal cycles on the pile response. However, those studies investigated the response of only precast and cast in-situ energy piles, with limited focus on the impact of the applied mechanical load on the pile response. This study presents the results of a field test conducted on a new type of energy pile, i.e. a displacement cast in-situ energy pile in multilayered soft soils, subjected to different fixed mechanical loads while undergoing simultaneous thermal cycles. Four tests were carried out, each corresponding to various axial loads ranging from 0 % to 60 % of the pile's estimated bearing capacity. After applying the axial load on the pile head (0 %, 30 %, 40 %, or 60 % of the bearing capacity), the pile was subjected to up to ten thermal cycles. The highest magnitudes of thermal axial strains were observed near the pile top due to the lowest restraint provided by the made ground layer in all tests. Under zero (0 %) mechanical load, the thermal axial strains near the pile head were elastic and recoverable, while residual strain was observed near the toe. Under reasonable working mechanical loads (30 %, 40 %, or 60 %) residual strains were observed near both the pile head and the toe, with higher residual strains observed under higher mechanical loads. The results indicate that the cyclic thermal loadings could induce an increase in the compressive stress in the energy pile, attributed to the drag-down effects of the surrounding soil. The compressive stress induced by drag-down effects counteracts thermally induced tensile stress and thus leads to an insignificant effect on the energy pile during cooling. A limited impact of the shaft capacity was observed and was mainly attributed to the drag-down of the surrounding soil and thermal creep along the pile-soil interface.