Composed of a raft and pipe piles with embedded heat exchange devices, a pipe-type energy piled raft foundation can enhance both foundation performance and energy utilization efficiency. An urgently needed thermomechanical analysis method would facilitate the optimization design and the broader adoption of this fundamental form. Therefore, this paper proposes an efficient method for the thermo-mechanical analysis of pipe-type energy piles with a raft in layered transversely isotropic media. The pile-soil and raft-soil interaction equations are derived by coupled finite and boundary element method. A simplified approach is then proposed and applied to tackle the pile-raft-soil coupling interaction. The correctness and efficiency of the method are verified through comparisons with a field test and two finite element numerical cases. Finally, parametric analyses are conducted to investigate the influences of temperature increment, pile thickness, raft thickness, and soil anisotropy on the performance of the pipe-type energy piled raft foundation.