共检索到 2

Energy piles, which serve the dual functions of load-bearing and geothermal energy exchange, are often modeled with surrounding soil assumed to be either fully saturated or completely dry in existing design and computational methods. These simplifications neglect soil saturation variability, leading to reduced predictive accuracy of the thermomechanical response of energy piles. This study proposes a novel theoretical framework for predicting the thermo-hydro-mechanical (THM) behavior of energy piles in partially saturated soils. The framework incorporates the effects of temperature and hydraulic conditions on the mechanical properties of partially saturated soils and pile-soil interface. A modified cyclic generalized nonlinear softening model and a cyclic hyperbolic model were developed to describe the interface shear stress-displacement relationship at the pile shaft and base, respectively. Governing equations for the load-settlement behavior of energy piles in partially saturated soils were derived using the load transfer method (LTM) and solved numerically using the matrix displacement method. The proposed approach was validated against experimental data from both field and centrifuge tests, demonstrating strong predictive performance. Specifically, the average relative error (ARE) was less than 15% for saturated soils and below 23% for unsaturated soils when evaporation effects were considered. Finally, parametric analyses were conducted to assess the effects of flow rate, groundwater table position, and softening parameters on the THM behavior of energy piles. This framework can offer a valuable tool for predicting THM behavior of energy piles in partially saturated soils, supporting their broader application as a sustainable foundation solution in geotechnical engineering.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107332 ISSN: 0266-352X

The coupled thermo-hydro-mechanical response caused by fire temperature transfer to surrounding rock/soil has a significant impact on tunnel safety. This study developed a numerical simulation model to evaluate the effects of fire on tunnel structures across different geological conditions. The heat transfer behavior varied with the mechanical properties and permeability of the geotechnics, concentrating within 1.0 m outside the tunnel lining and lasted for 10 days. Significant differences in pore water pressure changes were observed, with less permeable geologies experiencing greater pressure increases. Tunnel deformation was more pronounced in weaker geotechnics, though some tunnels in stronger geologies showed partial recovery post-fire. During the fire, thermal expansion created a bending moment, while a negative bending moment occurred after the fire due to tunnel damage and geotechnical coupling. The entire process led to irreversible changes in the bending moment. The depth of tunnel burial showed varying sensitivity to fire across different geological settings. This study provides important references for fire protection design and post-fire rehabilitation of tunnels under diverse geological conditions.

期刊论文 2025-08-01 DOI: 10.1016/j.compstruc.2025.107789 ISSN: 0045-7949
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页