共检索到 32

This study investigates the mechanical, thermal, and wears characteristics of eco-friendly composite materials (designated as N1 to N5) with varying ratios of silicon nitride (biogenic Si3N4) and biochar along with jute and kenaf microfiber. The primary aim of this research study was to investigate the suitability of low cost biomass derived functional ceramic fillers in composite material instead of high cost industrial ceramics. Both the bio carbon and biogenic Si(3)N(4 )were synthesized from waste sorghum husk ash via pyrolysis and thermo-chemical method. Further the composites are prepared via mixed casting process and post cured at 100 degrees C for 5 h. According to results, the mechanical properties show a consistent improvement, attributed to the contributions of biogenic Si3N4. Moreover, the specific wear rate decreases progressively, with a larger biogenic Si(3)N(4 )and bio carbon filler %. The presence of biochar acts as solid lubricant and offered balanced friction coefficient. The composite N4 attained maximum mechanical properties including tensile (110 MPa), flexural (173 MPa), impact (6.1 J), hardness (82 shore-D), compressive (138 MPa) and lap shear strength (16 MPa). On contrary, the composite N5 attained least thermal conductivity of 0.235 W/mK, Sp. Wear rate of 0.00545 with COF of 0.26. Similarly, the scanning electron microscope (SEM) analysis revealed highly adhered nature of fillers with matrix, indicating their cohesive nature indicating the strong interfacial adhesion between the fillers and the matrix, attributed to the presence of biochar, which enhances mechanical interlocking and provides functional groups that promote chemical bonding with the polymer matrix, leading to improved load transfer efficiency and overall composite performance. Moreover, thermal conductivity values exhibit a marginal decline with the presence of biogenic Si(3)N(4)and biochar. Overall, the study demonstrated that biomass-derived functional fillers are capable candidates for providing the required toughness and abrasion-free surfaces, as evidenced by the increased impact strength, improved wear resistance, and enhanced durability observed in treated specimens compared to the control samples.This approach offers both economic and environmental benefits by reducing human exposure to hazardous pollutants through the utilization of biomass-derived materials, which help divert waste from landfills, lower air pollution caused by burning conventional plastics, and minimize soil contamination from non-biodegradable waste. In addition, the developed natural fiber-reinforced composites exhibited competitive mechanical performance compared to conventional industrial ceramic-reinforced composites, demonstrating comparable strength, enhanced toughness, and improved damping properties while offering the advantages of lower density, biodegradability, and cost-effectiveness. These findings highlight the potential of biomass-derived fillers as sustainable alternatives in structural applications.

期刊论文 2025-06-04 DOI: 10.1007/s12633-025-03335-2 ISSN: 1876-990X

Local ecological materials in construction represent a fundamental step toward creating living environments that combine environmental sustainability, energy efficiency, and occupant comfort. It is part of an organizational context that encourages the adoption of these methods and processes. This study aims to improve the use of locally available materials, particularly soil and agricultural residues, in the Errachidia region (southeastern Morocco). In particular, date palm waste fiber, a widely available agrarian by-product, was incorporated into the soil to develop six different types of stabilized earth bricks with fiber contents of 0 %, 1 %, 2 %, 3 %, 4 %, and 5 %. The aim was to evaluate their thermophysical, mechanical, and capillary water absorption properties. Thermal properties were determined using the highly insulated house method (PHYWE), a specific methodology for assessing thermal properties in a controlled, highly insulated environment. In addition, mechanical measurements were carried out to assess compressive and flexural strength. The results obtained showed that the addition of date palm waste fibers to brick based on soil improves the thermal resistance of the bricks. Flexural and compressive strength increased up to 3 % of fiber content, while a reduction was observed above this value. The 3 % fiber content is optimal for the stabilization of brick based on soil. Then, the increase of fiber content in bricks resulted in an increase in water absorption with a decrease in the density of the bricks. Physical and chemical characterization (XRD, FTIR, SEM, and EDX) of the soil and date palm waste fibers was carried out with geotechnical soil tests. The results obtained showed that the soil studied satisfies the minimum requirements for the production of bricks stabilized by fibers. These bricks can be considered an alternative to conventional bricks in ecological construction.

期刊论文 2025-06-01 DOI: 10.1016/j.clwas.2025.100283

The growing significance of biodegradable plastics for environmental protection underscores the need to enhance their performance of degradation in natural environments. This study prepared PLA/PVA blends with varying ratios to assess the impact of PVA on their thermal properties, mechanical properties, and degradation behavior. Results indicated that as the PVA content increased from 0 to 100%, both tensile and flexural strengths initially decreased before increasing. Furthermore, the decomposition temperature of the blends decreased by 18-35 degrees C as the PVA content increased. Specifically, pure PLA exhibited a thermal degradation temperature of 332 degrees C; while, the blend with 80% PVA showed a reduced temperature of 296 degrees C. Hydrolysis tests showed that weight loss increased significantly with higher PVA content, with the 20PLA/80PVA blend losing 78.9% of its weight after 30 days, compared to only 0.13% for pure PLA. The mechanical properties of the 20PLA/80PVA blend decreased by 98.31% in tensile strength and 79.19% in hardness after 30 days of hydrolysis, demonstrating accelerated degradation. Soil degradation tests further revealed that the 20PLA/80PVA blend lost over 85% of its weight within 20 days; while, pure PLA lost less than 1%. These results suggest that altering the PLA/PVA ratio can substantially enhance degradation rates, offering valuable insights for the development of efficient biodegradable plastics.

期刊论文 2025-06-01 DOI: 10.1007/s00289-025-05676-9 ISSN: 0170-0839

In this research, the effect of using alpha fibres on the physico-mechanical properties of compressed earth bricks (CEBs) was investigated. CEBs were produced using soil, lime and different amounts (0%, 0.5%, 1%, 1.5% and 2%) of raw (RAF) or treated alpha fibres (TAF). First, the diameter, density and water absorption of RAF and TAF were determined. Then, the produced CEBs reinforced by these fibres were subjected to compressive strength, thermal test, density and capillarity water absorption tests. The obtained results showed that the addition of RAF and TAF leads to a reduction of the thermal conductivity by 33% and 31%, respectively. The finding also indicated that the density was decreased by 26% and 17% with the inclusion of TAF and RAF respectively. Besides, the compressive strength was reduced and water absorption coefficient was increased when fibres reinforced CEBs but remaining within the standard's recommended limits. Moreover, the addition of fibre improves the acoustic properties of samples by 98%. The CEBs developed in this paper could be an alternative to other more common building materials, which would lead to a reduction of energy demand and environmental problems.

期刊论文 2025-04-04 DOI: 10.1080/19648189.2024.2422362 ISSN: 1964-8189

The objective of the present work was to investigate the effect of CMC biopolymer on the physicochemical, mechanical, thermal, barrier, and biodegradation properties of PVA-based films. The polymeric films were developed using solution casting method, incorporating CMC at concentrations ranging from 0.5 to 1.5%. With the addition of CMC, the tensile strength (TS) of the hybrid films was reduced from 1.40 +/- 0.02 MPa to 1.99 +/- 0.02 MPa. However, there was a significant improvement in the elongation at break (EAB) up to 49.29% compared to PVA film. The addition of CMC resulted in substantial improvements in water vapor permeability (WVP) and moisture retention capacity (MRC), showcasing a 38.73% improvement in WVP and a satisfactory MRC of 78.374% at 0.5% CMC concentration. The hybrid films also exhibit enhanced light absorbance at UV wavelength with opacity ranging from 0.301 to 1.413. TGA analysis showed a notable enhancement in the decomposition temperature of the hybrid PVA/CMC films, resulting in reduced mass loss compared to the PVA film. FTIR spectra confirmed that blending CMC with PVA led to the formation of strong hydrogen bonds within the polymer blend, significantly affecting the intermolecular forces inside the cellulose matrix. Moreover, with the addition of CMC, the degradation rate of the PVA/CMC film was increased approximately to 40% on the 30th day of soil burial. The films also exhibit effective microbial degradation against Pseudomonas putida and Bacillus subtilis bacteria strains as compared to commercial plastics. Overall, the obtained results validate the use of CMC biopolymer for blending of single polymer system as well as scaling down the extensive use of petroleum-based polymers in the field of packaging.

期刊论文 2025-04-01 DOI: 10.1007/s11694-025-03121-z ISSN: 2193-4126

To meet polymeric material sustainability requirements of the modern polymer industry, a novel diphenyl-based monomer, dimethyl 2,2'-((carbonylbis(4,1-phenylene))bis(oxy))diacetate (DPBD), was prepared from 4,4'-dixydroxybenzophenone, derived from potentially bio-sourced 4-hydroxybenzoic acid. The diester monomer DPBD was polymerized with either 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, or 1,4-cyclohexanedimethanol as aliphatic diols to afford aliphatic/aromatic copolyesters (P1-P4). The copolyesters were characterized using gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing, as well as biodegradation and earthworm acute toxicity assays. The effects of diol carbon chain length and cyclic diol monomers on polyester properties were investigated. From the results, the weight-average molecular weight (Mw) of the polyesters ranged from 37.5 to 45.5 kg/mol, glass transition temperature (Tg) ranged from 65 to 78 degrees C, initial thermal decomposition temperature (Td,5%) varied from 324 to 353 degrees C, yield strength varied from 45 to 56 MPa, and elongation-at-break ranged from 215 to 290%. The properties can be adjusted by tuning the monomer structure, which induced a degradation rate of up to 4.6% after incubation in soil for 30 weeks, in contrast to poly(ethylene terephthalate) (PET) which showed no degradation under the same conditions. The ecotoxicity of the polyesters to earthworms remained low, even at high concentration polymer concentration tested (4000 mg/kg soil), the survival rate was above 82%. Therefore, polyesters offer a good combination of structure-to-property serving as potential alternatives to petroleum-based materials.

期刊论文 2025-04-01 DOI: 10.1007/s13726-024-01392-9 ISSN: 1026-1265

The present work investigates the development and characterization of cellulose acetate (CA) films with varying concentrations of CA, incorporating glycerol as a plasticizer and calcium chloride (CaCl2) as a crosslinker. The films were fabricated using solution casting and phase inversion techniques. The inclusion of glycerol significantly enhanced the surface morphology, tensile strength (TS), and elongation at break (EAB) of the films. The optimal composition, containing 10% (w/v) CA and 1% (v/v) glycerol, achieved the highest TS (3.199 +/- 0.077 MPa) and EAB (9.500% +/- 0.401%). The addition of CaCl2 to CA resulted in improved thermal properties of the films, suggesting effective crosslinking between CA and glycerol, as demonstrated by the DSC and TGA analyses. FTIR analysis suggested that glycerol interacts with cellulose, through hydrogen bonding, modifying the intermolecular forces within the cellulose matrix. Glycerol also improved the films' hydrophilicity and reduced swelling, solubility, and water contact angle (WCA). The films also exhibited antimicrobial properties against Staphylococcus aureus (S. aureus), a gram-positive bacterium, and achieved a soil biodegradation rate of 43.65% within 30 days. These results suggest that CA films with optimized glycerol and CaCl2 are promising for various industrial and medical applications where enhanced mechanical properties, permeability control, and biodegradability are essential.

期刊论文 2025-03-20 DOI: 10.1002/app.56615 ISSN: 0021-8995

Modern research is focused on the discovery of new compounds that meet the requirements of modern construction. An example of low energy consumption is that buildings consume between 20% and 40% of energy. In this research, the effect of fiber addition on the properties of compacted earth bricks composed of clay and sand and fixed with cement is studied. Fiberglass or palm are used in different proportions (0% and 0.4%). This is done by studying the change in mechanical and thermal properties. The study focuses on clarifying the role of fiber type and the amount of compressive force applied to the soil. To change the properties of bricks. This is studied using experimental methods and systematization criteria. The results showed a decrease in density by 9.1%, with a decrease in water absorption by 8%, an increase in brick hardness by 42.7%, and a decrease in thermal conductivity by 22.2%. These results show that the addition of fiber improves mechanical and thermal properties. Which reduces energy consumption. The results are important because they explain the changes that occur in the earth block when palm fibers and glass are added and how they are used to improve earthen buildings.

期刊论文 2024-12-31 DOI: 10.1080/15440478.2024.2397809 ISSN: 1544-0478

The mechanical and thermal properties of the fabricated structures composed of lunar regolith are of great interest due to the urgent demand for in situ construction and manufacturing on the Moon for sustainable human habitation. This work demonstrates the great enhancement of the mechanical and thermal properties of CUG-1A lunar regolith simulant samples using spark plasma sintering (SPS). The morphology, chemical composition, structure, mechanical and thermal properties of the molten and SPSed samples were investigated. The sintering temperature significantly influenced the microstructure and macroscopic properties of these samples. The highest density (similar to 99.7%), highest thermal conductivity (2.65 W.m(-1).K-1 at 1073 K), and the best mechanical properties (compressive strength: 370.2 MPa, flexural strength: 81.4 MPa) were observed for the SPSed sample sintered at 1273 K. The enhanced thermal and mechanical properties of these lunar regolith simulant samples are attributed to the compact structure and the tight bonding between particles via homogenous glass.

期刊论文 2024-12-01 DOI: 10.3390/cryst14121022

Heritage buildings are valuable assets that represent national cultural identity. Proper building maintenance is a major issue for preservation, as building monitoring aspects and preventive measures are often only taken after physical damage happens. In the context of Indonesian heritage buildings, high levels of humidity which may cause condensation and soil dampness are often overlooked. Early detection methods are urgently required to effectively detect potential risks of condensation. This study aims to investigate condensation risk for heritage building surfaces by calculating thermal properties (i.e., emissivity, albedo) and Blinn-Phong BRDF values through the integration of thermal imaging and 3D scanning techniques. This approach supports architects and conservators in making informed decisions to protect and maintain cultural heritage structures. The study also highlights gaps in current Indonesian regulations regarding moisture presence and condensation risk detection in heritage buildings.

期刊论文 2024-12-01 DOI: 10.1016/j.rineng.2024.103292 ISSN: 2590-1230
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 末页
  • 跳转
当前展示1-10条  共32条,4页