共检索到 3

The deformation characteristics of soil after thermal desorption are crucial for the evaluation of engineering properties, but the evolution mechanism is currently unclear. This study focuses on the thermal desorption of contaminated soil, conducting Geo-dynamic Systems consolidation-rebound tests to reveal the evolution mechanism of consolidation-rebound deformation and pore pressure characteristics, and exploring the evolution mechanism through pore structure, particle size distribution, and Cation Exchange Capacity tests. Results show that the consolidation characteristics of uncontaminated soil increase and then decrease with heating temperature, with 400 degrees C as a turning point. In contrast, the consolidation deformation of contaminated soil continues to decrease. The vertical deformation of the soil in the pre/early consolidation stage is greater before 400 degrees C, while after 400 degrees C, the deformation continues to increase with consolidation pressure, and higher heating temperatures enhance the soil's rebound deformation ability. Pore water pressure changes in two stages, with temperature ranges of 100-300 degrees C and 300-600 degrees C, and with increasing heating temperature, the characteristics of pore pressure change from clay to sand. Mechanism tests reveal that inter-aggregate pores affect initial deformation, while intra-aggregate pores affect later deformation, both showing a positive correlation. Aggregate decomposition increases initial deformation capacity at 100-400 degrees C while melting body fragmentation increases later deformation capacity at 500-600 degrees C. CEC decreases with increasing heating temperature, reducing inter-particle resistance and increasing soil deformation capacity. Particle size distribution and Cation Exchange Capacity impact consolidation-rebound pore pressure.

期刊论文 2024-12-01 DOI: 10.3390/w16233433

High-temperature thermal desorption is effective for remediating organic-contaminated sites, but its damage to soil functions and high energy consumption raise concerns. In this work, the variation of fertility indicators of two soils with thermal treatment temperature was investigated experimentally. To overcome the difficulties in measuring soil thermophysical properties under sealing and high-temperature conditions, two apparatus matching with the Hot Disk device were established and by which massive data were measured. The results show that, as temperature rises up to 500 degrees C, the combustion and decomposition of organic components and soil minerals gradually enhance, leading to a decrease in most fertility indicators, but an increase in grain size and pH. Available phosphorus and exchangeable potassium decrease with temperature rise first, but increase over 400 degrees C. Soil thermal conductivity and specific heat are positively correlated with temperature and water content. Water diffusion will intensify over 40 similar to 60 degrees C, leading to an intense increase in soil thermal conductivity. The results are expected to provide data basis and theoretical guidance for the comprehensive consideration of remediation effects, land reuse, and energy consumption in practical applications of thermal desorption remediation.

期刊论文 2024-12-01 DOI: 10.1016/j.rineng.2024.103636 ISSN: 2590-1230

Thermal desorption (TD) is known as an effective technique to remediate PAHs-contaminated sites. However, effectively removing PAHs using TD while saving time, and energy, and minimizing soil damage remains a challenge. In this study, we examined the combined effects of various factors on the removal efficiency of pyrene (PYR) by TD and developed an optimal numerical model based on conducting a series of soil experiments. The results showed that temperature (T) and time (t) promoted the desorption of PYR, while water (Sw) and organic matter (fom) were just the opposite. Besides, water and organic matter had a synergistic effect proportionally. It was found that adjusting the soil-water ratio (which can be controlled by organic matter) maximized the desorption rate of PYR. An ideal Sw/fom 1.56 and a minimized recommended temperature (173 degrees C) were pro-posed based on the model. Finally, the efficacy of the optimized scheme was validated in real-world site soil. These findings not only mechanistically revealed the desorption behavior of PYR under the influence of various factors, but also provided an optimized scheme for efficiently removing PAHs using TD, thereby accelerating the remediation process and reducing energy consumption. The modeling ideas and conclusions obtained may be applicable to other PAHs, guiding the effective remediation of PAHs-polluted sites.

期刊论文 2024-01-05 DOI: 10.1016/j.jhazmat.2023.132687 ISSN: 0304-3894
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页