共检索到 2

As an important component of carbonaceous aerosols (CA), organic carbon (OC) exerts a strong, yet insufficiently constrained perturbation of the climate. In this study, we reported sources of OC based on its natural abundance radiocarbon (14C) fingerprinting in aerosols and water-insoluble organic carbon (WIOC) in snowpits across the Tibetan Plateau (TP) - one of the remote regions in the world and a freshwater reservoir for billions of people. Overall, the proportions from C-14-based non-fossil fuel contribution (f(non-fossil)) for OC in aerosols was 74 +/- 10%, while for WIOC in snowpits was 81 +/- 10%, both of which were significantly higher than that of elemental carbon (EC). These indicated sources of OC (WIOC) and EC were different at remote TP. Spatially, high f(non-fossil) of WIOC of snowpit samples appeared at the inner part of the TP, indicating the important contribution of local non-fossil sources. Therefore, local non-fossil sources rather than long-range transportation OC dominants its total amount of the TP. In addition, the contribution of local non-fossil sourced WIOC increased during the monsoon period because heavy precipitation removed a high ratio of long-range transportation WIOC. The results of this study showed that not only OC and EC but also their different fuel sources should be treated separately in models to investigate their sources and atmospheric transportation.

期刊论文 2023-05-10 DOI: http://dx.doi.org/10.1016/j.scitotenv.2022.155020 ISSN: 0048-9697

At present, the glaciers in the Himalayas and the Tibetan Plateau (HTP) are retreating partly due to albedo reduction caused by deposited light-absorbing impurities such as mineral dust (MD) and black carbon (BC). Because BC also exists widely in MD from surface soil, it is necessary to further evaluate the contribution of BC from MD to the total BC at glacier region. This will help to improve the study of BC sources by considering the relative contributions from MD and direct combustion sources. Therefore, in this study, concentrations of total organic carbon (TOC) and fine particles of BC from 43 surface soil samples of the HTP were investigated. The contribution of BC from MD to total BC deposited at the glacier region was evaluated. The results showed strong correlations between TOC and BC of studied samples (R-2 = 0.70, p < 0.01), suggesting that they have similar sources and activity characteristics. The average BC concentration of studied samples was 2.02 +/- 1.55 mg g(-1), much lower than those of particles deposited at the glacier region and other regions with high soil TOC concentration. The contributions of BC from MD to total surface BC at two glaciers of the inner HTP (Zhadang and Xiaodongkemadi) were 17.66 +/- 10.84% and 20.70 +/- 16.35%, respectively. Therefore, the contribution of MD to glacier melting of the HTP is higher than that of previously assumed after BC coming along with MD is considered. Because MD concentration is higher at north and west part of the HTP, the contributions of MD at these glacier regions should be larger than previously assumed.

期刊论文 2020-01-01 DOI: 10.1007/s11356-019-07121-7 ISSN: 0944-1344
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页