共检索到 38

The Arctic terrestrial ecosystems are undergoing rapid climate change, causing shifts in the dynamics of soil nitrogen (N), a pivotal but relatively underexplored component. To understand the impacts of climate change on soil labile N pools, we performed meta- and decision-tree analyses of 391 observations from 38 peer-reviewed publications across the Arctic, focusing on experimental warming and snow addition. Soil dissolved organic nitrogen (DON), ammonium (NH4+ ), and nitrate (NO3 ) pools under experimental warming exhibited overall standard mean differences (SMDs) ranging from -0.08 to 0.02, with no significance (P > 0.05); however, specific conditions led to significant changes. The key determinants of soil labile N responses to warming were experimental duration and mean annual summer temperature for DON; annual precipitation, soil moisture, and sampling timing for NH+4 ; and soil layer for NO3 . Snow addition significantly increased all labile N pools (overall SMD = 0.23-0.36; P < 0.05), influenced by factors such as sampling timing and vegetation type for DON; experimental duration and soil moisture for NH+4 ; and soil pH for NO3 . By consolidating and reprocessing datasets, we not only showed the overall responses of soil labile N pools to climate manipulation experiments in Arctic tundra ecosystems but also identified key determinants for changes in soil N pools among environmental and experimental variables. Our findings demonstrate that warming and snow-cover changes significantly affect soil labile N pools, highlighting how the unique environmental characteristics of different sites influence terrestrial N cycling and underscoring the complexity of Arctic N dynamics under climate change.

期刊论文 2024-08-15 DOI: 10.1016/j.cej.2024.153066 ISSN: 1385-8947

Identifying the changes in terrestrial water storage is essential for a comprehensive understanding of the regional hydrological mass balance under global climate change. This study used a partial least square regression model to fill the observation gaps between GRACE and GRACE-FO and obtained a complete series of terrestrial water storage anomaly data from April 2002 to December 2020 from southeast China. We investigated the variations in terrestrial water storage anomalies in the region and the influencing factors. The study revealed that terrestrial water storage (TWS) anomalies have been increasing in the region, with an average increase of 0.33 cm/yr (p < 0.01). The intra-annual variation showed a positive anomaly from March to September and a negative anomaly in other months. Terrestrial water storage anomalies increased in most regions (especially in the central and northern parts), whereas they decreased in the southern parts. In terms of the components, the soil moisture storage (SMS) contributes 58.3 % and the surface water storage (SWS, especially reservoirs water storage) contributes 41.4 % to the TWS. The study also found that changes in the precipitation explain approximately 71.7 % of the terrestrial water storage variation, and reservoirs contributes to the remaining 28.3 %. These results are essential for understanding the changes in the hydrological cycle and developing strategies for water management in Southeast China.

期刊论文 2024-05-01 DOI: 10.1016/j.jhydrol.2024.131095 ISSN: 0022-1694

Humidity is a basic and crucial meteorological indicator commonly measured in several forms, including specific humidity, relative humidity, and absolute humidity. These different forms can be inter-derived based on the saturation vapor pressure (SVP). In past decades, dozens of formulae have been developed to calculate the SVP with respect to, and in equilibrium with, liquid water and solid ice surfaces, but many prior studies use a single function for all temperature ranges, without considering the distinction between over the liquid water and ice surfaces. These different approaches can result in humidity estimates that may impact our understanding of surface-subsurface thermal-hydrological dynamics in cold regions. In this study, we compared the relative humidity (RH) downloaded and calculated from four data sources in Alaska based on five commonly used SVP formulas. These RHs, along with other meteorological indicators, were then used to drive physics-rich land surface models at a permafrost-affected site. We found that higher values of RH (up to 40 %) were obtained if the SVP was calculated with the over-ice formulation when air temperatures were below freezing, which could lead to a 30 % maximum difference in snow depths. The choice of whether to separately calculate the SVP over an ice surface in winter also produced a significant range (up to 0.2 m) in simulated annual maximum thaw depths. The sensitivity of seasonal thaw depth to the formulation of SVP increases with the rainfall rate and the height of above-ground ponded water, while it diminishes with warmer air temperatures. These results show that RH variations based on the calculation of SVP with or without over-ice calculation meaningfully impact physicallybased predictions of snow depth, sublimation, soil temperature, and active layer thickness. Under particular conditions, when severe flooding (inundation) and cool air temperatures are present, care should be taken to evaluate how humidity data is estimated for land surface and earth system modeling

期刊论文 2024-02-20 DOI: 10.1016/j.scitotenv.2023.168697 ISSN: 0048-9697

Permafrost and ground freezing/thawing processes are physically and eco-climatologically important factors in the terrestrial cryosphere. The model reproducibility of frozen ground affects the certainty and reliability of simulated eco-climate conditions in cold regions as well as on a global scale. This study evaluated the variations and their attributes in the model performance developed and employed in the recent decade regarding the subsurface thermal state using outputs from Japanese and international model intercomparison projects and reanalysis data. The simulated surface and subsurface physical states were compared at four Arctic sites under different frozen ground conditions (Fairbanks, Kevo, Tiksi, and Yakutsk). The results showed that despite large variations in the modeled permafrost temperature, all the models, including the reanalysis data, successfully reproduced the permafrost conditions for the continuous permafrost sites. In contrast, some models failed to reproduce the presence of permafrost for the sites in the discontinuous to isolated permafrost zones. Evaluations of near-surface ground temperature variability revealed that the overall wellness of the simulated ground thermal states relied on winter reproducibility. The importance of snowpack metamorphosis for adequate thermal insulation was confirmed and demonstrated. The results at the coastal tundra site imply the importance of snow cover redistribution and wind crust formation owing to strong winds, the lack of which resulted in overestimations of thermal insulation and overcooled near-surface ground by most models.

期刊论文 2024-01-01 DOI: 10.5331/bgr23A02 ISSN: 1345-3807

Study region: The Northwest inland basins of China (NWC).Study focus: Terrestrial water resources, especially groundwater resources, are the main source of water for human activities and for maintaining the stability of the ecological environment in NWC. Excessive consumption of water resources will seriously affect the sustainable utilization of water resources and ecological security in this region. Therefore, it is urgent to clarify the long-term changes in water storage in this area in order to handle the pressure of future water re-sources and the natural environment. Using GRACE satellite datasets and global hydrological models (GHMs) products, this study analyzed spatiotemporal variations in terrestrial water storage anomalies (TWSA), groundwater storage anomalies (GWSA), soil moisture, snow water equivalent, and canopy interception combined anomalies (SSCA) in NWC through the application of the water balance, trend decomposition, and empirical orthogonal decomposition methods. Furthermore, the driving factors of water storage change and feasible water resource manage-ment strategies were discussed. New hydrological insights for the region: TWSA in the NWC has experienced a continuous decline over the past nearly 40 years, while SSCA has shown a weak increasing trend (0.03 cm yr-1). Since the availability of glacial retreat data (2003-2016), glacial water storage in the NWC has decreased by 0.09 cm per year, while TWSA, SSCA, and GWSA have changed at rates of -0.25, 0.02, and -0.18 cm yr-1, respectively. The North Tianshan Rivers Basin has become one of the areas with the most severe groundwater depletion in China. 2005-2010 was a turning period in the changes of TWSA, followed by widespread water loss across the NWC. Glacier and snow melt are the most important factors for the decline of TWSA in the Tianshan mountains area, and over -exploitation of groundwater by human activities is a secondary factor. For other regions, Groundwater losses remain the most significant contributor to TWSA losses. The massive loss of water storage in the Tianshan Mountains area, especially the accelerated retreat of glaciers, will affect the stable water supply to the middle and lower reaches of the oasis region, perhaps leading to increased groundwater extraction, which will threaten regional water security and sustainable development. Developing a water-saving society and implementing inter-basin water transfer arefeasible ways to alleviate the water resource crisis. Conducting a comprehensive analysis of all inland rivers in China helps to facilitate horizontal comparisons between various basins, thereby providing more comprehensive insights of water storage fluctuations. The data on water storage changes, extending back to 1980, provide a longer-term perspective on water resource changes in the region, which can contribute to enhancing water resource security and ecological environ-mental protection.

期刊论文 2023-10-01 DOI: 10.1016/j.ejrh.2023.101488

There is an increased awareness that the biogeochemical cycling at high latitudes will be affected by a changing climate. However, because biogeochemical studies most often focus on a limited number of elements (i.e., C, P and N) we lack baseline conditions for many elements. In this work, we present a 42-element mass-balance budget for lake dominated catchment in West Greenland. By combining site specific concentration data from various catchment compartments (precipitation, active layer soils, groundwater, permafrost, lake water, lake sediments and biota) with catchment geometries and hydrological fluxes from a distributed hydrological model we have assessed present-day mobilization, transport and accumulation of a whole suite of elements with different biogeochemical behavior. Our study shows that, under the cold and dry conditions that prevails close to the inland ice-sheet: i) eolian processes are important for the transport of elements associated with mineral particles (e.g., Al, Ti, Si), and that these elements tend to accumulate in the lake sediment, ii) that even if weathering rates are slowed down by the dry and cold climate, weathering in terrestrial soils is an important source for many elements (e.g., lanthanides), iii) that the cold and dry conditions results in an accumulation of elements supplied by wet deposition (e.g., halogens) in both terrestrial soils and the lake-water column, and iv) that lead and sulfur from legacy pollution are currently being released from the terrestrial system. All these processes are affected by the climate, and we can therefore expect that the cycling of the majority of the 42 studied elements will change in the future. However, it is not always possible to predict the direction of this change, which shows that more multi-element biogeochemical studies are needed to increase our understanding of the consequences of a changing climate for the Arctic environment.

期刊论文 2023-10-01 DOI: 10.1016/j.catena.2023.107311 ISSN: 0341-8162

Glacial landforms formed by multiple glaciations are well-preserved in the valleys around Karlik Mountain in the easternmost Tianshan range, Central Asia. These landforms are direct imprints of palaeoglaciers and represent important archives of past climatic and environmental conditions. Dating these landforms contributes to understanding the spatiotemporal variations of past glaciers and provides key information for reconstructing the palaeoclimate and palaeoenvironment in Central Asia. In this study, thirty-two boulder and bedrock samples were collected from two glaciated valleys on the southern slope of Karlik Mountain for terrestrial in situ cosmogenic nuclides (TCN)10Be surface exposure dating. Based on the geomorphic relationships and dating results, the innermost MS1 moraine complex was deposited during the Little Ice Age (LIA); the MS2 moraine complex was formed during the Late -glacial; the MS3 moraine complex was deposited during the global Last Glacial Maximum (LGMG); the MS4 moraine complex, which is the largest moraine complex, is marine oxygen isotope stage (MIS) 4 in ages; and the MS5 moraine complex, which is only preserved at the interfluve ridges, has a similar age to MS4. The age of MS4 demonstrates that the largest local last glacial maximum (LGML) occurred during the early part of the last glacial cycle rather than during the LGMG. The MS4 and MS5 glacial complexes imply that a large ice cap with outlet valley glaciers developed on the whole of Karlik Mountain during MIS 4. These ages, combined with previous landform mapping and dating on the northern slope of the mountain, show that glacial advances since MIS 4 in this mountainous area were restricted to the valleys, rather than large ice cap scale, which is consistent with moraine records in the other valleys across the Tianshan range. The pattern and nearly synchronous timing of palaeoglacier fluctuations during the last glaciation in arid Central Asia imply that the main determinant for glacier fluctuations in this region has been changes in precipitation brought by the westerlies during periods of low temperature.(c) 2023 Elsevier Ltd. All rights reserved.

期刊论文 2023-09-01 DOI: http://dx.doi.org/10.1016/j.quascirev.2023.108038 ISSN: 0277-3791

Global warming has accelerated during the past decades, causing a dramatic shrinking of glaciers across the globe. So far, the attempts to counterbalance glacial melt have proven to be inadequate and are mostly limited to a few glacial landscapes only. In the present study, a scientific glacier protection experiment was conducted at the Dagu Glacier site. Specifically, the study site was the Dagu Glacier No. 17, situated 4830 m a.s.l. The study involved a deliberate verification of the feasibility and effectiveness of using geotextile covers on small glaciers located at high altitudes between August 2020 and October 2021. The observations revealed that the mass loss in the area covered with geotextiles was, on average, 15% lower (per year) compared to that in the uncovered areas combining field campaigns, terrestrial laser scanning, and unmanned aerial vehicle. The reason for this could be that the albedo of the geotextile is higher than that of the glacier surface. In addition, the aging of geotextiles causes a decline in their albedo, leading to a gradual decline in the effectiveness of the resulting glacier protection. It was indicated that geotextiles could be effective in facilitating the mitigation of glacier ablation, although the cost-related limitations render it difficult to upscale the use of artificial cover. Nonetheless, using active artificial cover could be effective in the case of small glaciers, glacier landscapes, and glacier terminus regions.

期刊论文 2023-04-01 DOI: http://dx.doi.org/10.3390/rs15071755

The impacts of alternating dry and wet conditions on water production and carbon uptake at different scales remain unclear, which limits the integrated management of water and carbon. We quantified the response of runoff efficiency (RE) and plant water-use efficiency (PWUE) to a typical shift from dry to wet episode of 2003-2014 in Australia's Murray-Darling basin using good and specific data products for local application, including Australian Water Availabil-ity Project, Penman-Monteith-Leuning Evapotranspiration V2 product, MODIS MCD12Q1 V6 Land Cover Type and MODIS MOD17A3 V055 GPP product. The results show that there are significant power function relationships be-tween RE and precipitation for basin and all ecosystems, while the PWUE had a negative quadratic correlation with precipitation and satisfied the significance levels of 0.05 for basin and the ecosystems except the grassland and crop-land. The shrubs can achieve the best water production and carbon uptake under dry conditions, while the evergreen broadleaf trees and evergreen needleleaf trees can obtain the best water production and carbon uptake in wet condi-tions, respectively. These findings help integrated basin management for balancing water resource production and climate change mitigation.

期刊论文 2023-02-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2022.158359 ISSN: 0048-9697

Understanding terrestrial water storage (TWS) dynamics and associated drivers (e.g., climate variability, vegetation change, and human activities) across climate zones is essential for designing water resources management strategies in a changing environment. This study estimated TWS anomalies (TWSAs) based on the corrected Gravity Recovery and Climate Experiment (GRACE) gravity satellite data and derived driving factors for 214 watersheds across six climate zones in China. We evaluated the long-term trends and stationarities of TWSAs from 2004 to 2014 using the Mann-Kendall trend test and Augmented Dickey-Fuller stationarity test, respectively, and identified the key driving factors for TWSAs using the partial correlation analysis. The results indicated that increased TWSAs were observed in watersheds in tropical and subtropical climate zones, while decreased TWSAs were found in alpine and warm temperate watersheds. For tropical watersheds, increases in TWS were caused by increasing water conservation capacity as a result of large-scale plantations and the implementation of natural forest protection programs. For subtropical watersheds, TWS increments were driven by increasing precipitation and forestation. The decreasing tendency in TWS in warm temperate watersheds was related to intensive human activities. In the cold temperate zone, increased precipitation and soil moisture resulting from accelerated and advanced melting of frozen soils outweigh the above-ground evapotranspiration losses, which consequently led to the upward tendency in TWS in some watersheds (e.g., Xiaoxing'anling mountains). In the alpine climate zone, significant declines in TWS were caused by declined precipitation and soil moisture and increased evapotranspiration and glacier retreats due to global warming, as well as increased agriculture activities. These findings can provide critical scientific evidence and guidance for policymakers to design adaptive strategies and plans for watershed-scale water resources and forest management in different climate zones.

期刊论文 2022-10-01 DOI: 10.3390/f13101541
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 末页
  • 跳转
当前展示1-10条  共38条,4页