Soft clay soils inherently exhibit low mechanical strength, imposing significant challenges for various engineering applications. The present research explores various techniques and stabilizers to enhance soft clay's suitability for construction purposes. This study evaluates the mechanism of stabilizing kaolin using recycled macro-synthetic fibers (RMSF) for the first time. Samples were prepared with 5 % LKD, with 25 % replaced by VA, and varying RMSF amounts of 0, 0.5 %, 1 %, and 1.5 % in lengths ranging from 4 to 6 mm. The specimens were cured for 7, 28, and 56 days and exposed to 0, 1, 4, and 10 freeze-thaw (F-T) cycles. Laboratory investigations were conducted through standard compaction, Unconfined Compressive Strength (UCS), Indirect Tensile Strength (ITS), Scanning Electron Microscope (SEM), California Bearing Ratio (CBR), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) tests on the samples at various stages of stabilizer addition, both before and after F-T cycles. The optimal mixture was 5 % LKD, with 25 % VA replacement and 1 % RMSF, which led to a considerable 11-fold enhancement in ITS and a 14-fold improvement in UCS compared to the untreated sample. Additionally, the secant modulus (E50) and energy absorption capacity (Eu) of the sample with the optimal combination content increased in comparison to the stabilized sample without RMSF. The CBR of the optimal sample reached 81 %, allowing for an 87 % reduction in pavement thickness compared to the untreated sample. According to the findings of this research, the combination of LKD, VA, and RMSF increased the compressive and tensile strength properties, bearing capacity, and durability of kaolin, making it an appropriate option for use in various practical civil projects like road construction.
Bio-mediated ground improvement techniques, including Microbial Induced Calcite Precipitation (MICP) and Enzyme Induced Calcite Precipitation (EICP) treatment methods, are extensively being employed nowadays in a variety of construction projects as newly emerging sustainable and environmentally-friendly approaches to enhance the mechanical properties and durability characteristics of earthen composites. The intrinsic brittleness of MICP- and EICP-treated soils, however, considerably limits their applications in practical geotechnical engineering. Fiber reinforcement has been widely acknowledged as an efficient solution to overcome such challenges and augment the ductility of biologically stabilized soils. Accordingly, there is growing attention to integrating natural and synthetic fibers into bio-based composites, opening up exciting possibilities for improved performance and versatility in different civil engineering applications. This review aims to examine the current state of research on utilizing fiber additives to enhance the effectiveness of MICP and EICP treatment methods in an attempt to provide an in-depth insight into the effects of fiber type, content, and length as well as the underlying mechanisms of fiber interactions within the porous structure of such treated soils. The applications of fiberreinforced bio-cemented soils, their limitations, and the major challenges encountered in practice, as well as the potential areas of interest for future research and the key factors to be considered when selecting suitable fiber for optimal soil treatment using MICP/EICP, are all critically elaborated and discussed. By synthesizing the current research findings, the study provides engineers with a valuable resource to guide the development and optimization of fiber-reinforced MICP and EICP techniques for effective soil improvement and stabilization. Based on the findings of all relevant studies in the literature, a comprehensive cost-performance-balance analysis is conducted aiming to serve as a useful guideline for researchers and practitioners interested in applying fibers in various construction projects or other related applications where either MICP or EICP technique is being utilized as the main soil stabilization approach.