Bacterial cellulose (BC), known for its exceptional physical properties and sustainability, has garnered widespread attention as a promising alternative to petrochemical-based plastic packaging. However, application of BC for packaging remains limited due to its hygroscopic nature, poor food preservation capabilities, and low optical transparency. In this study, a novel in-situ spraying method for chitosan (CS) encapsulation was developed to fabricate BC/CS hybrid structure layer by layer. The resulting composites exhibit effective antimicrobial activity against both Gram-positive and Gram-negative (> 75 %) bacteria, ensuring food preservation and safety. The BC/CS composites were modified through mercerization and heat drying (mBC/CS), transforming the cellulose crystal structure from cellulose I to the more stable cellulose II and inducing the alignment of a compact structure. Following waterborne polyurethane (WPU) coating, the mBC/CS/WPU composites acquired hydrophobic and heat-sealable properties, along with an 80 % reduction in haze and light transmittance exceeding 85 %. Further, they exhibited exceptional mechanical properties, including an ultimate tensile strength exceeding 200 MPa and omnidirectional flexibility. These composites could also preserve the freshness of sliced apples (< 20 % weight loss) and poached chicken (< 3 % weight loss) after one week of storage, comparable to commercial zipper bags, and also prevent food contamination. Notably, the mBC/CS/WPU composites displayed no ecotoxicity during decomposition and degraded completely within 60 days in soil. This study provides a valuable framework for functionalizing BC-based materials, promoting sustainable packaging, and contributing to the mitigation of plastic pollution.
This research explores the synthesis of carboxymethyl cellulose (CMC) for the development of a cost-effective bioplastic film that can serve as a sustainable alternative to synthetic plastic. Replacing plastic packaging with CMC-based films offers a solution for mitigating environmental pollution, although the inherent hydrophilicity and low mechanical strength of CMC present significant challenges. To address these limitations, zinc oxide nanoparticles (ZnO NPs) were employed as a biocompatible and non-toxic reinforcement filler to improve CMC's properties. A solution casting method which incorporated varying concentrations of ZnO NPs (0%, 5%, 10%, 15%, 20%, and 25%) into the CMC matrix allowed for the preparation of composite bioplastic films, the physicochemical properties of which were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results revealed that the ZnO NPs were well-integrated into the CMC matrix, thereby improving the film's crystallinity, with a significant shift from amorphousness to the crystalline phase. The uniform dispersion of ZnO NPs and the development of hydrogen bonding between ZnO and the CMC matrix resulted in enhanced mechanical properties, with the film CZ20 exhibiting the greatest tensile strength-15.12 +/- 1.28 MPa. This film (CZ20) was primarily discussed and compared with the control film in additional comparison graphs. Thermal stability, assessed via thermogravimetric analysis, improved with an increasing percentage of ZnO Nps, while a substantial decrease in water vapor permeability and oil permeability coefficients was observed. In addition, such water-related properties as water contact angle, moisture content, and moisture absorption were also markedly improved. Furthermore, biodegradability studies demonstrated that the films decomposed by 71.43% to 100% within 7 days under ambient conditions when buried in soil. Thus, CMC-based eco-friendly composite films have the clear potential to become viable replacements for conventional plastics in the packaging industry.
This study investigates the potential of utilizing green chemically treated spent coffee grounds (SCGs) as micro biofiller reinforcement in Poly-3-hydroxybutyrate- co -3-hydroxyvalerate (PHBV) biopolymer composites. The aim is to assess the impact of varying SCG concentrations (1 %, 3 %, 5 %, and 7 %) on the functional, thermal, mechanical properties and biodegradability of the resulting composites with a PHBV matrix. The samples were produced through melt compounding using a twin-screw extruder and compression molding. The findings indicate successful dispersion and distribution of SCGs microfiller into PHBV. Chemical treatment of SCG microfiller enhanced the interfacial bonding between the SCG and PHBV, evidenced by higher water contact angles of the biopolymer composites. Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the successful interaction of treated SCG microfiller, contributing to enhanced mechanical characteristics. A two-way ANOVA was conducted for statistical analysis. Mass losses observed after burying the materials in natural soil indicated that the composites degraded faster than the pure PHBV polymer suggesting that both composites are biodegradable, particularly at high levels of spent coffee grounds (SCG). Despite the possibility of agglomeration at higher concentrations, SCG incorporation resulted in improved functional properties, positioning the green biopolymer composite as a promising material for sustainable packaging and diverse applications.
In the pursuit of enhancing food packaging, nanotechnology, particularly green silver nanoparticles (G-AgNPs), have gained prominence for its remarkable antimicrobial properties with high potential for food shelf-life extension. Our study aims to develop corn starch-based coating materials reinforced with G-AgNPs. The mechanical properties were examined using a uniaxial tensile tester, revealing that starch coated with the highest G-AgNPs concentration (12.75 ppm) exhibited UTS of 87.6 MPa compared to 48.48 MPa of control paper, a significant (p < 0.02) 65% increase. The assessment of the WVP showcased a statistical reduction in permeability by up to 8% with the incorporation of the hydrophobic layer. Furthermore, antibacterial properties were assessed following ISO 22196:2011, demonstrating a strong and concentration-dependent activity of G-AgNPs against E. coli. All samples successfully disintegrated in both simulated environments (soil and seawater), including samples presenting G-AgNPs. In the food trial analysis, the presence of starch and G-AgNPs significantly reduced weight loss after 6 days, with cherry tomatoes decreasing by 8.59% and green grapes by 6.77% only. The results of this study contribute to the advancement of environmentally friendly packaging materials, aligning with the UN sustainable development goals of reducing food waste and promoting sustainability.