共检索到 8

The fundamental cause of frost heave and salt expansion of saline soil is the water condensation and salt crystallization during the freezing process. Therefore, controlling the water and salt content is crucial to inhibit the expansion behaviors of saline soil. Recently, electroosmosis has been demonstrated to accelerate soil dewatering by driving hydrated cations. However, its efficiency in mitigating the salt-induced freezing damages of saline soil requires further improvement. In this study, a series of comparative experiments were conducted to investigate the synergistic effects of electroosmosis and calcium chloride (CaCl2) on inhibiting the deformation of sodium sulfate saline soil. The results demonstrated that electroosmosis combined with CaCl2 dramatically increased the cumulative drainage volume by improving soil conductivity. Under the external electric field, excess Na+ and SO42- ions migrated towards the cathode and anode, respectively, with a portion being removed from the soil via electroosmotic flow. These processes collectively contributed to a significant reduction in the crystallization-induced deformation of saline soil. Additionally, abundant Ca2+ ions migrated to cathode under the electric force and reacted with OH- ions or soluble silicate to form cementing substances, significantly improving the mechanical strength and freeze-thaw resistance of the soil. Among all electrochemical treatment groups, the soil sample treated with 10 % CaCl2 exhibited optimal performance, with a 71 % increase in drainage volume, a 180 similar to 443 % enhancement in shear strength, and a 65.1 % reduction in freezing deformation. However, excessive addition of CaCl2 resulted in the degradation of soil strength, microstructure, and freeze-thaw resistance.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04906 ISSN: 2214-5095

Sulfate saline soil is considered as an inferior subgrade construction material that is highly susceptible to damage from salt heaving and dissolution. Polyurethane/water glass (PU/WG) is an efficient grouting material widely used in underground engineering; however, its application in saline soil reinforcement has not yet been reported. In this study, PU/WG was used to solidify sulfate-saline soils. The influence of the dry density, curing agent ratio, and salt content on the strength was evaluated. The mechanical properties of the solidified soil were determined by conducting uniaxial compression strength tests, and crack development was detected using acoustic emission technology. The reinforcing mechanism was revealed by scanning electron microscopy tests and mercury intrusion porosimetry. The results indicated that the peak stress, peak strain, and ultimate strain increased with increasing dry density and PU/WG content, whereas they decreased with increasing salt content. The relationship between the peak stress, density, and PU/WG can be described using linear functions. The relationship between the peak stress and salt content can be described by a second-order polynomial function. The larger the dry density and the higher the PU/WG content, the steeper the stress-strain curves and the lower the ductility. Further, the higher the salt content, the higher the ductility. Soil with a higher dry density, more PU/WG, and less salt content exhibited higher brittleness. Thus, PU/WG can fill in the original disorganized and large pores, thereby increasing the complexity of the internal pore structure via organic-inorganic gel reactions.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04328 ISSN: 2214-5095

The engineering diseases caused by seasonal sulfate saline soil in Hexi region of Gansu Province seriously affect the local infrastructure construction and operation maintenance. To address this issue, this study explored the thermal mass transfer law, pore fluid phase transition, soil deformation and microstructure of unsaturated sulfate saline soil under the open system. Firstly, based on the theories of porous media mechanics and continuum mechanics, combined with the conservation equations of mass, energy and momentum and considering the phase transition of pore fluid, a multi-field coupled mathematical model of hydro-thermal-salt-gas-mechanical for unsaturated sulfate saline soil was established. Secondly, basic unknown variables such as pore water pressure, concentration, temperature, porosity, and displacement were selected to perform numerical simulation analysis on the equation system by Comsol Multiphysics finite element method. Finally, a comparative analysis was conducted between the on-site measured data and the numerical simulation results. The results show that the water and salt phase transitions caused by temperature change could lead to soil salt heave and frost heave, alter the pore structure of the soil, and reduce the compactness of the soil, ultimately being reflected in the changes in soil porosity. The influence of external temperature on soil temperature gradually decreases with increasing depth, and the sensitivity of frozen areas to external temperature is much higher than that of unfrozen areas. This study not only enriches the theoretical results of thermal mass transfer law and deformation of unsaturated sulfate saline soil, but also provides practical guidance for the prevention and control of engineering diseases in local sulfate saline soil.

期刊论文 2025-06-01 DOI: 10.1007/s11629-024-8956-6 ISSN: 1672-6316

The salinization of sulfate saline soil in frozen regions can lead to severe potential environmental hazards, such as increased salt heaving and collapsibility. Corn stalk ash (CSA), a typical agricultural waste that is non-polluting to soil, groundwater, and the environment, possesses high pozzolanic activity and is a potential amendment for sulfate saline soil. To verify the feasibility of using CSA to improve sulfate saline soil, a series of experiments were conducted to study the effects of CSA content, salt content, and freeze-thaw cycles on the mechanical properties of the improved soils. A statistical damage constitutive model was established that comprehensively considers the coupled effects of freeze-thaw, salinity, moisture, and loading to more accurately describe the improvement effects of CSA. The study shows that CSA is highly effective in improving sulfate saline soil. The application of this method can significantly increase the unconfined compressive strength (UCS) of sulfate saline soil and greatly enhance their freeze-thaw resistance. The best improvement effect was observed with a CSA content of 15%. Furthermore, the coupled statistical damage constitutive model more accurately and intuitively analyzed the entire deformation and failure process of the improved soil under coupled effects, showing that the addition of CSA enhances the brittle characteristics of the improved soil while reducing its plastic deformation and ductile failure characteristics. In summary, the method of using CSA to improve sulfate saline soil is highly effective and environmentally friendly, providing a theoretical basis for improving sulfate saline soil in seasonally frozen regions.

期刊论文 2025-04-01 DOI: 10.1007/s10064-025-04197-z ISSN: 1435-9529

To study the effect of increased rainfall on the heat and mass transfer and deformation characteristics of sulfate saline soil, a geometric similarity ratio model (1:6) of the natural site was created inside the self-developed indoor baseplate-atmospheric dual-temperature control model box. For the first time, combined with the characteristics of the surface energy change, the characteristics of water-heat-salt-mechanical coupling changes within sulfate saline soil under normal rainfall and twice the increase in rainfall were studied. The results show that the increased rainfall leads to a more significant decrease in upward shortwave radiation and downward longwave radiation, as well as a more significant increase in the surface net radiation and surface evaporation rate. Additionally, the increase in rainfall leads to an obvious cooling trend in the surface temperature. Compared with normal rainfall, an increase in rainfall leads to a significant increase in soil water content and conductivity, while soil heat flux and temperature significantly decrease. The increased rainfall caused a temperature drop of 1.6 degrees C at 5 cm of saline soil. Moreover, the increased rainfall leads to an increase in the heat release time of sulfate saline soil. Meanwhile, the impact of increased rainfall on the soil water content, conductivity, and temperature gradually weakens with increasing depth. The increased rainfall can exacerbate thawing settlement deformation and alleviate salt frost heave deformation. Compared with normal rainfall, twice the increase in rainfall results in a 0.9 mm increase in thawing settlement deformation and a 2.5 mm decrease in salt frost heave deformation.

期刊论文 2025-02-01 DOI: 10.1016/j.coldregions.2024.104363 ISSN: 0165-232X

The theoretical and experimental studies have been carried out on the water and salt migration and deformation characteristics of sulfate saline soil during freeze-thaw cycles. Based on the theory of unsaturated soil mechanics and the thermoelastic continuum and considering the influence of phase change within the pore on thermodynamic and hydrodynamic parameters, the multi-physical fields coupled model of hydro-thermal-salt-mechanical in unsaturated sulfate saline soil has been established. The variation processes of the temperature field, water field, salt field, and stress field of the soil during freeze-thaw cycles were analyzed, and the validity of the theoretical model was verified by indoor experiments. The results show that there are significant attenuation and hysteresis effects when heat is transferred in the soil during freeze-thaw cycles. The water content of migration in the soil increases with the height of the soil column, while the increment of migration water content decreases with the number of freeze-thaw cycles. The formation and dissolution of salt crystals from top to bottom and the sudden increase in the salt crystallization rate are mainly caused by variations in the solubility of the salt solutions due to temperature changes. The formation and dissolution of ice and salt crystals in the soil induce expansion and contraction, and the freeze-thaw cycle conditions have a significant effect on the expansion and residual deformation of the soil.

期刊论文 2024-10-01 DOI: 10.1016/j.coldregions.2024.104289 ISSN: 0165-232X

The water-salt migration law and deformation characteristics of coarse-grained saline soils have been extensively studied and illustrated. However, owing to the influence of the chemical composition and physical properties of the soils, coarse-grained soils are prone to localized soil absorption during mixing and compaction. This type of working condition of the existing localized fine sand accumulation layers is seldom discussed in the literature. In this study, water-salt migration and deformation of natural gradation specimens and specimens with localized fine sand accumulation layers in natural gradation were monitored and detected for the field fill conditions in an airport embankment project using self-designed test equipment based on nine freeze-thaw cycle physical simulation tests at environmental temperatures ranging from-30 degrees C to 25 degrees C. Under the freeze-thaw cycle, compared with the natural gradation, the specimens with localized fine sand accumulation layers had a higher influence on water and salt migration, which indicates that the depth range of drastic changes in water and salt increased by 80% and 84%, respectively. The cumulative deformation curves under the effects of natural gradation and localized fine sand accumulation exhibited similar trends. The difference between the deformation of the natural samples and samples with localized fine sand accumulation layers was 16% when the salt content of the upper part of the roadbed was 0.3%. In addition, the cumulative vertical settlement deformation of the specimens decreased with an increase in the salt content of the upper part of the roadbed and gradually transformed into vertical uplift deformation. The results of this study provide a basis for the selection of materials for airport roadbed backfill and their application in construction in seasonally frozen areas.

期刊论文 2024-09-01 DOI: 10.1016/j.coldregions.2024.104269 ISSN: 0165-232X

The study of the mechanical properties of frozen saline soil is one of the key issues in addressing the design of infrastructure in cold regions. This research focuses on the supersulfated saline soil of the Ningxia Yellow River Irrigation Area in China, conducting triaxial tests under negative temperatures (-5, -10, -15 degrees C, and - 20 degrees C) with varying water contents (12%, 16%, 20%). Based on fractional calculus theory and incorporating an exponential decay factor, this study proposes a novel fractional-order constitutive model for a unified description of the softening and hardening behaviors in frozen saline soil. The model treats frozen saline soil as a composite blend of ideal solids and ideal fluids in varying proportions, taking into account the material's inherent timedependency and non-linear stress-strain relationships. Finally, the validity of the model is verified by the calculated values of the model and the triaxial tests. The results indicate that, based on preliminary judgment, due to the presence of salt solutes, a large amount of liquid water remains in the supersulfated saline soil at temperatures ranging from 0 to -10 degrees C, forming an unstable state called warm frozen saline soil. The mechanical properties of frozen saline soil depend on the relative content of unfrozen water, ice crystals, and salt crystals and the formation of ice and salt crystals significantly enhances the strength of frozen saline soil. The computational results of the improved fractional constitutive model align well with experimental results, effectively describing the stress-strain relationship of frozen supersulfate saline soil. In the model, the parameter functions analogously to an elastic modulus and exhibits a linear relationship with temperature, and the parameter alpha characterizes the strain hardening of saline soil, while beta describes its softening behavior. The proposed fractional constitutive model, with only three parameters having clear physical significance, is convenient for practical engineering applications.

期刊论文 2024-06-01 DOI: 10.1016/j.coldregions.2024.104202 ISSN: 0165-232X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页