共检索到 2

Fluoride, a highly phytotoxic and nonessential element in higher concentrations is a major concern in decreasing wheat production. In the present study, we examined the ability of silicon, a semi-essential element which helps to mitigate the detrimental effects of various environmental stresses in overcoming fluoride-mediated toxicity in wheat cultivars. The seeds of two wheat cultivars, tolerant (Raj 4120) and susceptible (Raj 4238), were grown in soil supplemented with NaF (0, 400, and 500 mg kg-1) and then supplied with silicon (0, 200, and 300 mg kg-1) as Na2SiO3 at 10th days of germination with 160 mu mol quanta m-2 s-1 of photon density, 16-h photoperiod, and 55-60% relative humidity at 25 +/- 2 degrees C. The fluoride stress led to oxidative damage in roots, as evidenced by the significant elevation in MDA and H2O2 content in both wheat cultivars and decreased major components of the suberin and cesA4 gene expression in roots, which together can negatively impact the rigidity and strength of the cell wall. Conversely, the application of silicon had a beneficial effect in both wheat cultivars with and without fluoride stress. Silicon decreased the MDA and H2O2 content levels and increased the antioxidant defence system. Interestingly, Si was able to partially reverse F stress in both the wheat cultivars by increasing suberin deposition on the endodermis and promoting secondary cell wall synthesis gene expression in roots. The present study concluded that soil application of silicon can be a useful approach in protecting wheat from fluoride toxicity.

期刊论文 2025-03-11 DOI: 10.1007/s00344-025-11692-w ISSN: 0721-7595

Soil salinity induces osmotic stress and ion toxicity in plants, detrimentally affecting their growth. Potato (So- lanum tuberosum) suffers yield reductions under salt stress. To understand salt-stress resilience mechanisms in potatoes, we studied three cultivars with contrasting salt sensitivity: Innovator, Desiree, and Mozart. Innovator emerged as the most resilient under salt stress, displaying minimal reductions in growth and plant tolerance index with no tuber yield loss, despite notable water loss. Conversely, Desiree experienced a significant tuber yield reduction but maintained better water retention. Mozart showed a low plant tolerance index and high water loss. Interestingly, ions measurement across different tissues revealed that, unlike chloride, sodium does not accumulate in tubers under salt stress in these cultivars, suggesting existence of an active sodium exclusion mechanism. A whole root transcriptomic analysis of these cultivars revealed a conserved salt stress response between potato and Arabidopsis. This response includes activation of various abiotic stress pathways and involves sequential activation of various transcription factor families. Root analyses showed that Innovator has lower suberin and lignin deposition, along with stronger K+ leakage in control conditions, resulting in a higher early stress response and increased ABA accumulation shortly after salt stress induction. This could explain Innovator has a more divergent transcriptomic response to salt stress compared to Desiree and Mozart. Nevertheless, Innovator displayed high suberin and lignin levels and ceased K+ leakage after salt stress, suggesting a high acclimation ability. Altogether, our results indicate that acclimation ability, rather than initial root protection against salt prevails in long-term salt-stress resilience of potato.

期刊论文 2025-03-01 DOI: 10.1016/j.stress.2025.100798 ISSN: 2667-064X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页