共检索到 3

In today's era of rapid infrastructure development, ensuring the durability and environmental sustainability of soil subgrades in road construction remains a critical concern. With recent advancements in non-traditional soil stabilizing binders, including environmentally friendly industrial waste materials such as fly ash and slag, there is growing recognition of the potential for limestone powder (LSP), a low-carbon alternative soil stabilizing material, to replace traditional calcium-based additives like ordinary Portland cement (OPC) and lime. However, the full extent of LSP's efficacy in soil treatment has yet to be fully explored. Therefore, this paper investigates the partial substitution of cement with LSP for stabilizing sulfate-bearing saline sandy soil and assesses its impact on the treated soil samples' mechanical properties and durability parameters. For this purpose, five stabilized mixes, including a control mix (no stabilizer), were designed, wherein LSP partially replaced 8% of the OPC at 25%, 50%, and 75% substitution levels. A series of laboratory tests were conducted to track the changes in the geochemical properties and the mineralogical compositions and evaluate the stabilized soil samples' improved mechanical performance and durability parameters. The experimental results show that adding LSP to the cement-treated sulfate-bearing saline soil improved the soil's mechanical properties and enhanced the soil's durability parameters. Specifically, it decreased the soil plasticity, improved the soil strength parameters, enhanced the soil stability, and reduced the volumetric swelling and soil moisture susceptibility. In addition to its technical advantages, using LSP, an industrial byproduct, in soil stabilization offers environmental and economic benefits, highlighting its potential as a sustainable solution in engineering practices.

期刊论文 2024-11-01 DOI: 10.3390/su16219224

The extensive use of non-biodegradable and petroleum derived polymers in industry exacerbates environmental problems associated with plastic waste accumulation and fossil resource depletion. The most promising solution to overcome this issue is the replacement of these polymers with biodegradable and bio-based polymers. In this paper, novel biocomposites were prepared from bio-based polyamide 5.6 (PA56) with the addition of olive stone powder (OSP) at varying weight concentrations by melt compounding method. The degradability of the prepared biocomposites is investigated through soil burial test, and assessed by reduction in their mechanical properties. The biodegradability of bio-based polyamide 5.6 is shown to be improved by addition of olive stone powder, and its effects on the properties of polymer matrix are elucidated. The Fourier transform infrared (FTIR) spectrum of the biocomposites indicate the successful incorporation of OSP into PA56 polymer matrix. After six-month soil burial test, scanning electron microscopy and FTIR show the degradation of PA56 through morphological and structural changes, respectively. Differential scanning calorimetry reveals the changes in the transition temperatures of the polymer matrix and an increase in crystallinity. Thermogravimetric analysis is used on the biocomposite to determine the fraction of its components, polymer and biofiller, and the results show that 2.67% (w/w) of the polyamide 5.6 is biodegraded at the end of the six-month soil burial.

期刊论文 2024-11-01 DOI: 10.1007/s00289-024-05388-6 ISSN: 0170-0839

Hundreds of studies have been written in the last several decades on the advantages of using stone powder as a raw material in the production of fired clay bricks. The durability and long-term behavior of the finished product, however, have received very little attention in the literature. Clay bricks are generally fired at high temperatures in developing countries, which reduces the mechanical performance of the bricks. This is especially evident in extreme environmental settings where weathering leads to significant damage. The evaluation of concrete waste (stone powder) used to make fired clay bricks is the main topic of this study. There are two sections: the first evaluates how adding stone powder to clay bricks improves their physical characteristics such absorption, efflorescence, density, and firing shrinkage. The impact of stone powder on the mechanical characteristics of specimens of burned clay bricks, such as compressive and flexural strengths, is covered in the second section. The percentages of stone powder in the clay bricks are 0 %, 5 %, 10 %, 15 %, and 20%. While the ratio of dry soil to water content remains is 0.3. In this work three fire phases are used untel to the maximum temperature is reached. The first one is 300 degrees C, the second phase is 600 degrees C, and 900 degrees C for the third phase. The water absorption of specimens decreased as the quantity of stone powder increased, and efflorescence also decreased, according to the results for the physical attributes. The density does, however, somewhat rise with the amount of stone powder. Additionally, when the amount of stone powder was increased, the experimental results indicated that firing shrinkage decreased. Mechanically considered, clay brick specimens with 20% more stone powder showed stronger compressive flexural capabilities.

期刊论文 2024-06-01 DOI: 10.2478/cee-2024-0037 ISSN: 1336-5835
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页