共检索到 4

Soil-steel composite bridges (SSCBs) are commonly utilized as overpasses. In the majority of existing studies, the transverse structural performance of SSCBs is primarily focused on, while neglecting their longitudinal structural performance. The aims of this paper are to clarify the longitudinal properties and compensate for the paucity of research on the longitudinal structural performance of SSCBs. In current study, field tests were conducted on a SSCB case bridge in a mining area, both in the construction stage and post-construction stage. Subsequently, longitudinal differences in the structural settlements, deformations, and hoop strains were analyzed. Additionally, a refined three-dimensional finite element model was developed and verified to analyze the transfer behavior of soil pressure above the structure along the longitudinal direction. The results indicate that in the construction stage, the difference in the soil-covered height primarily account for the differences in structural performances along the longitudinal direction. At the end of backfilling, the settlements, deformations, and hoop strains in the middle are all greater than those in the end sections. In the post-construction stage, further developments of longitudinal structural characteristics occur due to creep deformation of the foundation soil and disturbances from mining trucks. One year after construction, the structural characteristics have stabilized. The maximum settlement reaches -1.014 m and the maximum settlement difference reaches 0.365 m. The differential settlement ratio, at 0.62 %, remains within the 1 % limit specified in the CHBDC code. Due to longitudinal settlement differences, the soil pressure in the higher settlement zone is transferred to the lower settlement zone by the longitudinal soil arching effect, which benefits the load-bearing capacity of SSCBs.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2024.e04148 ISSN: 2214-5095

Steel and reinforced concrete buildings are popular structural systems. The design of these buildings is regulated by deterministic building codes. In this context, it is established that if building codes are followed, the structure will resist demands without collapsing. However, no regulation is required to control the damage of structures in terms of performance criteria. In this paper, the seismic performance and structural reliability of both steel and reinforced concrete buildings, respectively, are analyzed as a benchmark case of study. Both buildings are designed in an earthquake-prone area for two soil types, respectively. Subsequently, nonlinear dynamic analyzes are conducted and the seismic responses of the models are determined in terms of inter-story drift. To obtain seismic responses, eleven characteristic ground motions of the region are selected corresponding to three performance levels: (1) immediate occupancy, (2) life safety, and (3) collapse prevention, respectively. It was documented that the resulting maximum inter-story drift was much lower than the one obtained from modal analysis. In addition, the risk was computed in terms of reliability index integrating a novel probabilistic approach with performance-based design criteria. According to the results, a small variation in the structural risk among the buildings under consideration is observed. However, buildings designed for rigid soil proved to be more reliable. Additionally, it is observed that the buildings designed with current regulations are too conservative based on the performance criteria limits. Hence, structures located on earthquake-prone areas may be overdesigned when implementing deterministic building codes.

期刊论文 2025-04-24 DOI: 10.1007/s13369-025-10199-6 ISSN: 2193-567X

Compared with circular, arched, and pipe-arched soil-steel structures, box-type soil-steel structures (BTSSSs) have the advantages of high cross- utilization and low cover depth. However, the degree of influence of the crown and haunch radii on the mechanical performance of BTSSSs is still unclear. Therefore, two full-scale BTSSS models with a span of 6.6 m and a rise of 3.7 m but with different crown and haunch radii were established, and the mechanical properties during backfilling and under live load were tested. Afterward, 2D finite element models (FEMs) were established using the ABAQUS 2020 software and verified using the test data. The influence of cross- geometric parameters on mechanical performance was analyzed by using the FEM, and a more accurate formula for calculating the bending moment during backfilling was proposed. The results show that the BTSSS with a smaller crown radius has a stronger soil-steel interaction, which promotes more uniform stress on the structure and makes the structure have smaller relative deformations, bending moments, and earth pressure. The span and arch height greatly influence the bending moment and deformation of the structure. Based on the CHBDC, the crown and haunch radii were included in the revised calculation formula.

期刊论文 2024-04-01 DOI: 10.3390/ma17081710

This research presents several examples of detailed finite element analysis of an entire building structure as a brief review of the authors' challenge. The authors consider that the detailed FE models provided results with less variability depending on the engineers or analysis programs than simplified analysis models commonly used in practical building engineering because the FE model does not require many assumptions associated with simplifying the shape of structural members. The first challenge for detailed FE analysis of RC buildings including surrounding soil is described. Second, the validation of the detailed FE analysis for steel building structures is provided. In this analysis, the failure criterion of the steel material was applied, and the failure was predicted. Lastly, the validation of an entirely detailed FE model of RC buildings is introduced. The validity was shown by winning a blind analysis contest that was a competition for the accuracy of the analysis with experimental results hidden. Hence, the authors' work has shown the potential of a detailed FE analysis for an entire building structure.

期刊论文 2024-01-01 DOI: 10.1007/978-3-031-65407-7_14 ISSN: 1573-6059
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页