共检索到 1

The present paper sets out a comparative analysis of carbon emission and economic benefit of different performance gradients solid waste based solidification material (SSM). The macro properties of SSM were the focus of systematic study, with the aim of gaining deeper insight into the response of the SSM to conditions such as freeze-thaw cycles, seawater erosion, dry-wet cycles and dry shrinkage. In order to facilitate this study, a range of analytical techniques were employed, including scanning electron microscopy (SEM), X-ray diffraction (XRD) and mercury intrusion porosimetry (MIP). The findings indicate that, in comparison with cement, the carbon emissions of SSM (A1) are diminished by 77.7 %, amounting to 190 kg/t, the carbon-performance ratio (24.4 kg/ MPa), the cost-performance ratio (32.1RMB/MPa) and the carbon-cost ratio (0.76kg/RMB) are reduced by 86 %, 56 % and 68 % respectively. SSM demonstrated better performance in terms of freeze-thaw resistance, seawater erosion resistance and dry-wet resistance when compared to cement. The dry shrinkage value of SSM solidified soil was reduced by approximately 35 % at 40 days compared to cement solidified soil, due to compensatory shrinkage and a reduction in pores. In contrast to the relatively minor impact of seawater erosion and the moderate effects of the wet-dry cycle, freeze-thaw cycles have been shown to cause the most severe structural damage to the micro-structure of solidified soil. The conduction of durability tests resulted in increased porosity and the most probable aperture. The increase in pores and micro-structure leads to the attenuation of macroscopic mechanical properties of SSM solidified soil. The engineering application verified that with the content of SSM of 50 kg/m, 4.5 % and 3 %, the strength, bearing capacity and bending value of SSM modified soil were 1.9 MPa, 180 kPa and 158, respectively in deep mixing piles, shallow in-situ solidification, and roadbed modified soil field.

期刊论文 2025-09-01 DOI: 10.1016/j.mtsust.2025.101135 ISSN: 2589-2347
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页