Soil-rock mixtures are composed of a complex heterogeneous medium, and its mechanical properties and mechanism of failure are intermediate between those of soil and rock, which are difficult to determine. To consider the influence of different particle groups on soil-rock mixture's shear strengths, based on the mesomotion properties of the particles of different particle groups when the soil-rock mixture is deformed, it is classified into two-phase composites, matrix and rock mass. In this paper, based on the representative volume element model of soil-rock mixtures and the Eshelby-Mori-Tanaka equivalent contained mean stress principle, a model of shear constitutive of the accumulation considering the mesoscopic characteristics of the rock is established, the influence of different factors on the shear strength of the accumulation is investigated, and the mesoscopic strengthening mechanism of the rock on the shear strength of the accumulation is discussed. The results show that there is a positive correlation between the rock content, the surface roughness of the rock, the stress concentration coefficient, coefficient of average shear displacement, and the accumulation's shear strength. When the accumulation is deformed, it stores or releases additional energy than the pure soil material, so it shows an increase in deformation resistance and shear strength on a macroscopic scale.
The mechanical properties and failure characteristics of soil-rock mixtures (SRMs) directly affect the stability of tunnels constructed in SRMs. A new SRM modelling method based on the combined finite-discrete element method (FDEM) was proposed. Using this new SRM modelling method based on the FDEM, the mechanical characteristics and failure behaviour of SRM samples under uniaxial compression, as well as the failure mechanism of SRMs around a tunnel, were further investigated. The study results support the following findings: (1) The modelling of SRM samples can be achieved using a heterogeneous rock modelling method based on the Weibull distribution. By adjusting the relevant parameters, such as the soil-rock boundaries, element sizes and modelling control points, SRM models with different rock contents and morphologies can be obtained. (2) The simulation results of uniaxial compression tests of SRM samples with different element sizes and morphologies validate the reliability and robustness of the new modelling method. In addition, with increasing rock content, VBP (volumetric block proportion), the uniaxial compressive strength and Young's modulus increase exponentially, but the samples all undergo single shear failure within the soil or along the soil-rock interfaces, and the shear failure angles are all close to the theoretical values. (3) Tunnels in SRMs with different rock contents all exhibit X-shaped conjugate shear failure, but the fracture network propagation depth, the maximum displacement around the tunnel, and the failure degree of the tunnel in the SRM roughly decreases via a power function as the rock content increases. In addition, as the rock content increases, such as when VBP = 40%, large rocks have a significant blocking effect on fracture propagation, resulting in an asymmetric fracture network around the tunnel. (4) The comparisons of uniaxial compression and tunnel excavation simulation results with previous theoretical results, laboratory test results, and numerical simulation results verify the correctness of the new modelling method proposed in this paper.
Red stratum is widely distributed in Southwest China, and a large number of deep soil-red stratum soft rock mixed backfill areas were formed when the site was leveled by high excavation and low filling during the construction of mountain city in this area. Tunnels under construction inevitably go through backfill, which makes tunnel excavation under deep soil-rock mixture backfill become a common condition. Meanwhile, rainfall is frequent and concentrated in Southwest China, and the resulting wet disintegration of red stratum soft rock has a significant impact on the deformation and bearing characteristics of soil-rock mixture. As a result, it was decided in the present study to conduct a shear-unloading test on the soil-red stratum soft rock mixture, augmented by discrete element numerical simulations, to reveal the influence of wetting. This all-encompassing strategy seeks to examine the laws governing the deformation and progression of damage of the mixture, offering valuable insights into its response when subjected to unloading conditions. The findings indicate that the soil-red stratum soft rock mixture prior to and after wetting shows obvious strain hardening characteristics during the shear process. The residual strength after unloading has a linear correlation with unloading amplitude. The soilred stratum soft rock mixture prior to wetting is loaded by the rock block bearing skeleton, and the rock block breakage is primarily caused by shear, while jointly loaded by soil and rock block in saturated sample, with the rock block breakage caused by wetting. After the unloading process, the dry sample's bearing capacity no longer increases and eventually overall failure occurs. Conversely, the saturated sample's bearing capacity can continue to increase and ultimately layered failure from the top to the bottom occurs. The unloading rate mainly affects the growth rate of load-bearing capacity after unloading of saturated samples.
Purpose - The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil rock mixtures (SRM), in which the rocks within the SRM model have shape randomness, size randomness and spatial distribution randomness. Design/methodology/approach - Based on the modeling method of heterogeneous rocks, the SRM numerical model can be built and by adjusting the boundary between soil and rock, an SRM numerical model with any rock content can be obtained. The reliability and robustness of the new modeling method can be verified by uniaxial compression simulation. In addition, this paper investigates the effects of rock topology, rock content, slope height and slope inclination on the stability of SRM slopes. Findings - Investigations of the influences of rock content, slope height and slope inclination of SRM slopes showed that the slope height had little effect on the failure mode. The influences of rock content and slope inclination on the slope failure mode were significant. With increasing rock content and slope dip angle, SRM slopes gradually transitioned from a single shear failure mode to a multi-shear fracture failure mode, and shear fractures showed irregular and bifurcated characteristics in which the cut-off values of rock content and slope inclination were 20% and 80 degrees, respectively. Originality/value - This paper proposed a new modeling method for SRMs based on FDEM, with rocks having random shapes, sizes and spatial distributions.
The red stratum soft rock, contained extensively in the deep soil-rock mixture (SRM) backfill area of southwest China, exhibits significant water-disintegrating properties that greatly impact the foundation's bearing capacity and deformation failure in this region. This study introduced the large-scale triaxial test to investigate the mechanical deformation characteristics of clay-red stratum soft rock mixture before and after wetting. Simultaneous, combined with the results of test, the law of water disintegration of red stratum soft rock was revealed, and its effects were analyzed in detail. The results show that: (1) Wetting intensified the crushing of rock blocks, resulting in the reduction of shear strength and critical strain of the samples, the decrease of critical internal friction angle and secant modulus, and the significant increase of the relative crushing rate of rock blocks; (2) The most significant increase and decrease of the content before and after the test occur in the particles with the particle size of 0.5-2 mm and 20-40 mm, respectively; (3) Wetting-induced breakage of the red stratum soft rock mainly occurs during the first two hours after encountering water; (4) An increase in confining pressure exacerbates the influence of wetting. Additionally, based on the theory of non-linear elasticity, with the assuming that the reduction of secant modulus causes the wetting deformation, a theoretical calculation model of the wetting axial strain was proposed. Through comparing the calculated results with the measured values obtained by using the double-line method and single-line method test, it is found that the calculation method can accurately predict the wetting axial strain of SRM and be used for quantitative analysis of wetting deformation.
This study adopts the Smoothed Particle Hydrodynamics (SPH) technique to accurately and efficiently replicate and forecast the mesoscopic behavior of soil-rock mixtures (SRM). It introduces a novel approach for generating rock blocks within the SRM, utilizing a method that randomly selects angles and lengths. In addition, this research proposes a method for discretizing any shaped region into free particles with specific material attributes, named the regional medium particle discretization method. It incorporates the Drucker-Prager constitutive model to develop the SPH numerical model for SRM. Furthermore, it examines the effects of different rock sizes and rock contents on the SRM's failure characteristics and mechanical properties. The findings revealed that, for identical rock contents, smaller rock samples exhibit a more dispersed failure surface with numerous secondary shear bands, whereas larger rock samples display a smoother and more concentrated failure surface. As the rock content decreases, shear bands typically form in the sample's center and are relatively straight. However, as the rock content increases, the shear bands' configuration becomes more intricate, often featuring multiple shear bands. This method offers a fresh perspective for exploring the mechanical properties of heterogeneous materials.