Fibre reinforcement technology has been widely adopted in soil improvement due to its cost-effectiveness, simplicity, and environmental benefits. In many fibre reinforcement projects, the soil is often in an unsaturated state. However, the numerical simulation mechanisms of fibre-reinforced unsaturated soils remain poorly understood. In this study, a Vangenuchten (VG) model considering fibre incorporating fibres was proposed based on the original VG model. This model considering fibre accurately describes the soil water characteristic curve (SWCC) of fibre-reinforced sand (FRS), as verified by water-holding characteristics tests. Then, unsaturated triaxial tests confirmed the applicability of an unsaturated soil elastoplastic constitutive model and a fully coupled soil-water-air finite element-finite difference (FE-FD) method for simulating the mechanical behaviour of unsaturated FRS. Finally, using the SWCC parameters derived from the VG model considering fibres and mechanical parameters from saturated triaxial tests, slope models were established to analyse the stability of both unreinforced and fibre-reinforced slopes. The results show that the interweaving action of fibres within the soil enhances its strength, reduce permeability, and decreases both saturation and pore water pressure, ultimately increasing slope stability. This study provides valuable insights into the SWCC characteristics and the numerical calculation of FRS under unsaturated conditions.
The parameters of the soil water characteristic curve (SWCC) play a pivotal role in the examination of unsaturated soil behavior. This study employs three machine learning models-random forest (RF), extreme gradient boosting (XGBoost), and multiexpression programming (MEP)-to predict the SWCC using key soil properties. Among them, the RF model demonstrated the most robust performance in SWCC prediction. The Shapley Additive Explanation (SHAP) analysis further reveals that suction is the most influential factor affecting SWCC predictions, with other input parameters also contributing significantly. Additionally, the MEP model offers a straightforward expression for SWCC estimation and, thus, proved practical for predicting embankment responses and exhibited superior accuracy over traditional methods, such as the Arya and Paris model (ACAP). For a precise assessment of the hydromechanical response of the embankment subjected to infiltration, an increase in pore pressure is observed when employing the MEP model compared to the ACAP model for fine-grained soils. The findings emphasize the potential of RF and MEP in enhancing SWCC prediction and their practical implications for soil engineering applications.
In this paper, a state-dependent, bounding surface plasticity model that simulates the behavior of unsaturated granular soils is presented. An unsaturated, soil mechanics-compatible elastoplastic response is adopted in which no part of the response occurs in a purely elastic fashion. To create an appropriate hydro-mechanical coupling, a newer generation stress framework, consisting of the Bishop-type effective stress and a second stress variable, is used in conjunction with a soil-water characteristic curve function. Details regarding the model development, parameter estimation, and assessment of the model's predictive capabilities are outlined. With a single set of parameter values, the model realistically simulates the main features that characterize the shear and volumetric behavior of unsaturated granular soils over a wide range of matric suction, density, and net confining pressure.