共检索到 2

The mining and reclamation of opencast coal mines affect the soil volumetric water content (SVWC1). An accurate measurement of the SVWC is critical for land reclamation. However, traditional methods often damage the soil structure and are time-consuming. Thus, a rapid and non-destructive method is required to measure the SVWC in reclaimed mining areas. This study aimed to evaluate the feasibility and effectiveness of using ground penetrating radar (GPR) for estimating SVWC in reclaimed mining areas. We obtained GPR data and collected soil profile samples from the South Dump of the Antaibao opencast coal mine in Pinglu District, Shuozhou City, Shanxi Province. Random Hough transformation and inverse distance weighted interpolation were used to analyze the two-dimensional soil water layer thickness (SWLT) and SVWC in different soil layers and profiles. The radar estimated and the sampling measured value of SVWC were consistent with the soil depth. The Pearson correlation coefficient (r) between the radar estimated and the sampling measured values of SVWC was 0.850 in different soil layers, the lowest root mean squared error (RMSE) was 0.43%, and the lowest relative root mean square error (RRMSE) was 3.80%. The r was up to 0.959, the lowest RMSE was 0.58% to 0.90%, and the lowest RRMSE was 1.46% in different profiles. These results demonstrate the method's feasibility and effectiveness, enabling the precise non-destructive estimation of SVWC. The results provide valuable technical support for the efficient reclamation and restoration of mining areas.

期刊论文 2025-05-01 DOI: 10.1016/j.catena.2025.108845 ISSN: 0341-8162

The accumulation of soil organic carbon (SOC) is crucial for the development and ecosystem function restoration of reclaimed mine soils (RMSs). To optimize reclamation management practices, this study aims to explore the factors and underlying mechanisms influencing the recovery of SOC and its components in RMSs from a systemic perspective using complex network theory (CNT). This study focused on coal mining subsidence areas in the eastern mining regions of China, comparing reclaimed cultivated land with surrounding non-subsided cultivated land. Soil samples were collected at depths of 0-20 cm, 20-40 cm, and 40-60 cm, and 25 soil indicators were measured. CNT was applied to explore the intricate relationships between soil indicators and to identify the key factors and underlying mechanisms influencing SOC and its components in RMSs. The results revealed that the compaction-induced soil structural damage during the reclamation process led to a chain reaction, resulting in increased soil bulk density (11.92 % to 15.03 %), finer soil particles (5.00 % to 9.88 % more clay and silt), and enhanced SOC mineralization (SOC decreased by 10.70 % to 15.62 % with a lower C/N ratio by 2.30 % to 28.55 %). Microbial activity also decreased, with a 6.25 % to 13.16 % drop in MBC and a 0.91 % to 27.68 % decrease in enzyme activity. The utilization of active SOC fractions by more adaptable bacterial communities was crucial within this chain reaction process. The intermediate role of soil structure in the RMS ecosystem, particularly in carbon cycling, becomes more prominent. RMSs exhibited heightened sensitivity to soil structure changes, with the response of microorganisms and enzymes to soil structure changes being pivotal. In the carbon cycling

期刊论文 2024-01-15 DOI: 10.1016/j.scitotenv.2023.168523 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页