共检索到 3

Fungal communities can be used as indicators of various environmental processes in forest ecosystems. The diversity of these communities is linked to aboveground plants and soil properties. We assessed fungal diversity at four Norway spruce sampling sites that were growing on fertile mineral soils (Oxalidosa) in northwestern Latvia. Three sites were managed-a three-year-old clear-cut and fifty- and eighty-five-year-old stands; one site was unmanaged-a naturally regenerated site after wind damage in 1969. For metabarcoding, we used a fungal internal transcribed spacer (ITS2) and high throughput sequencing with the Ion Torrent platform. Our results showed high operational taxonomic unit richness in the samples, with notable variation in community composition between individual plots both within and among sites, with the highest being in managed, middle-aged stands and the lowest in unmanaged. Significant differences in the diversity of soil fungal communities were not detected between the sites. Redundancy analysis indicated that pH, soil organic matter, organic carbon, and nitrogen were the most important soil variables that explained the variation in fungal communities. The unmanaged stand differed notably by community composition. This study highlights the importance of monitoring forest soil environmental parameters and fungal communities to gain a more comprehensive assessment of forestry management regimes.

期刊论文 2025-03-12 DOI: 10.3390/f16030500

This paper has attempted to determine the weighting levels of the soil and ground motion parameters (engineering bedrock depth (EBd), average shear wave velocity (Vs30), fundamental frequency (f0), peak ground acceleration (PGA), Joyner-Boore distance (Rjb), and epicenter distance (Repi)) in reflecting the actual damage status after the 2023 Kahramanmara & scedil; earthquakes, which have a wide impact area of 11 provinces. The analytical hierarchy method (AHP), a multi-criteria decision-making (MCDM) process, was used to analyze these parameter data sets obtained from 44 Disaster and Emergency Management Presidency of T & uuml;rkiye (AFAD) stations (Gaziantep, Hatay, Kahramanmara & scedil;, and Osmaniye). The priority order of the parameters before the analysis was systematically collected. These parameters were categorized into soil, ground motion and earthquake source-path properties. Considering the literature, these characteristics and their combined effects were systematically weighted with AHP under five groups. According to the weighted groups in the scope of the study, the actual damage data can be determined with a minimum accuracy rate of 70% (Group 1). In comparison, the best performance evaluation was 82% (Group 5). The parameter order and weights in the actual damage data evaluation are suggested as EBd-%28, PGA-%24, Vs30-%19, Rjb-%14, f0-%10, and Repi-%5 considering the very high accuracy rate of Group 5. This suggested weighting allows the rapid and effective estimation of the damage distribution after a possible earthquake only with soil, ground motion and earthquake source-path characteristics, even in cases where reliable structure data cannot be obtained.

期刊论文 2025-03-11 DOI: 10.1007/s10518-025-02139-4 ISSN: 1570-761X

Antarctic glacier forefields are extreme environments and pioneer sites for ecological succession. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats, and new terrain is becoming exposed to soil formation and microbial colonization. However, only little is known about the impact of environmental changes on microbial communities and how they develop in connection to shifting habitat characteristics. In this study, using a combination of molecular and geochemical analysis, we determine the structure and development of bacterial communities depending on soil parameters in two different glacier forefields on Larsemann Hills, East Antarctica. Our results demonstrate that deglaciation-dependent habitat formation, resulting in a gradient in soil moisture, pH and conductivity, leads to an orderly bacterial succession for some groups, for example Cyanobacteria, Bacteroidetes and Deltaproteobacteria in a transect representing classical' glacier forefields. A variable bacterial distribution and different composed communities were revealed according to soil heterogeneity in a slightly matured' glacier forefield transect, where Gemmatimonadetes, Flavobacteria, Gamma- and Deltaproteobacteria occur depending on water availability and soil depth. Actinobacteria are dominant in both sites with dominance connected to certain trace elements in the glacier forefields.

期刊论文 2013-07-01 DOI: 10.1111/1574-6941.12105 ISSN: 0168-6496
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页