共检索到 2

In an increasingly dry environment, it is crucial to understand how tree species use soil water and cope with drought. However, there is still a knowledge gap regarding the relationships between species-specific stomatal behaviour, spatial root distribution, and root water uptake (RWU) dynamics. Our study aimed to investigate above- and below-ground aspects of water use during soil drying periods in four temperate tree species that differ in stomatal behaviour: two isohydric tracheid-bearing conifers, Scots pine and Norway spruce, and two more anisohydric deciduous species, the diffuse-porous European beech, and the ring-porous Downy oak. From 2015 to 2020, soil-tree-atmosphere-continuum parameters were measured for each species in monospecific forests where trees had no access to groundwater. The hourly time series included data on air temperature, vapor pressure deficit, soil water potential, soil hydraulic conductivity, and RWU to a depth of 2 m. Analysis of drought responses included data on stem radius, leaf water potential, estimated osmotically active compounds, and drought damage. Our study reveals an inherent coordination between stomatal regulation, fine root distribution and water uptake. Compared to conifers, the more anisohydric water use of oak and beech was associated with less strict stomatal closure, greater investment in deep roots, four times higher maximum RWU, a shift of RWU to deeper soil layers as the topsoil dried, and a more pronounced soil drying below 1 m depth. Soil hydraulic conductivity started to limit RWU when values fell below 10-3 to 10-5 cm/d, depending on the soil. As drought progressed,oak and beech may also have benefited from their leaf osmoregulatory capacity, but at the cost of xylem embolism with around 50 % loss of hydraulic conductivity when soil water potential dropped below -1.25 MPa. Consideration of species -specific water use is crucial for forest management and vegetation modelling to improve forest resilience to drought.

期刊论文 2024-10-10 DOI: 10.1016/j.scitotenv.2024.174346 ISSN: 0048-9697

By altering the physical properties of soil through root activity, plants can act as important agents in affecting soil hydrothermal properties. However, we still know little about how plant roots regulate these properties in certain ecosystems, such as alpine meadows. Thus, we studied the influence of roots on soil hydrothermal properties in the Qinghai-Tibet Plateau (QTP). Root biomass as well as soil physicochemical and hydrothermal properties were examined at a depth of 0-30 cm at three study sites in the QTP. The relationship between root biomass and saturated soil hydraulic conductivity (K-s) was examined, as was the applicability of common soil hydrothermal properties models to the alpine meadow system. Results revealed that approximately 91.10%, 72.52%, and 76.84% of root biomass was located in the top 0-10 cm of soil at Maqu, Arou, and Naqu, respectively. Compared with the bulk soil, the water-holding capacity of rhizosphere soil was enhanced by 20%-50%, while K-s was decreased by at least 2- to 3-fold. The thermal conductivity (lambda) of rhizosphere soils was lower than that of the bulk soil by 0.23-0.82 W m(-1).K-1 on average. Lastly, soil hydrothermal properties models that do not explicitly consider root effects overestimated the Ks and lambda in the rhizosphere soil of these systems. Overall, our results revealed distinctive differences in soil hydrothermal properties between the rhizosphere soil and the bulk soil in the QTP. This research has important implications for future modeling of soil hydrothermal processes of alpine meadow soils.

期刊论文 2021-04-01 DOI: http://dx.doi.org/10.1016/j.rhisph.2021.100451
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页