As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Simple Summary Microorganisms and their enzymes are crucial to ensuring soil quality, health, and carbon sequestration. Their numerous reactions are essential for biogeochemical cycles. However, a comprehensive review is lacking to summarize the latest findings in agricultural and enzymatic research. Although the relationships between soil enzyme activities and different soil ecosystems, such as arctic and permafrost regions, tropics and subtropics, tundra, steppes, etc., have been intensively investigated, particularly in the context of climate changes, only a few reviews summarize the impact of climate change on soil enzyme activity. This review aims to highlight the main groups of microbial enzymes found in soil (such as alpha-glucosidases and beta-glucosidases, phosphatases, ureases, N-acetyl-glucosaminidases, peptidases, etc.), their role in the global nutrient cycles of carbon, nitrogen, phosphorus, sulfur, carbon sequestration, and the influence of intensive agriculture on microbial enzymatic activity, and the variations in enzyme activity across different climate zones and soil ecosystems. Furthermore, the review will emphasize the importance of microbial enzymes for soil fertility and present both current challenges and future perspectives.Abstract The extracellular enzymes secreted by soil microorganisms play a pivotal role in the decomposition of organic matter and the global cycles of carbon (C), phosphorus (P), and nitrogen (N), also serving as indicators of soil health and fertility. Current research is extensively analyzing these microbial populations and enzyme activities in diverse soil ecosystems and climatic regions, such as forests, grasslands, tropics, arctic regions and deserts. Climate change, global warming, and intensive agriculture are altering soil enzyme activities. Yet, few reviews have thoroughly explored the key enzymes required for soil fertility and the effects of abiotic factors on their functionality. A comprehensive review is thus essential to better understand the role of soil microbial enzymes in C, P, and N cycles, and their response to climate changes, soil ecosystems, organic farming, and fertilization. Studies indicate that the soil temperature, moisture, water content, pH, substrate availability, and average annual temperature and precipitation significantly impact enzyme activities. Additionally, climate change has shown ambiguous effects on these activities, causing both reductions and enhancements in enzyme catalytic functions.