The earthen construction sector attracts worldwide attention, and earthen bricks are widely used. The conThe earthen construction sector attracts worldwide attention, and earthen bricks are widely used. The construction industry has also progressed in its use of natural green resources such as plant fibers to design building struction industry has also progressed in its use of natural green resources such as plant fibers to design building materials that are both economically and ecologically sustainable. However, the valorization of plant waste in materials that are both economically and ecologically sustainable. However, the valorization of plant waste in construction represents a crucial environmental challenge. The present study focuses on the development and construction represents a crucial environmental challenge. The present study focuses on the development and characterization of a new, low-cost earth-based building material stabilized with cement and corn straw fibers in characterization of a new, low-cost earth-based building material stabilized with cement and corn straw fibers in southeastern Morocco. Different earth bricks stabilized with different cement contents and corn straw fibers were southeastern Morocco. Different earth bricks stabilized with different cement contents and corn straw fibers were developed. The physico-chemical characterization of the soils used in the design of the bricks was carried out, developed. The physico-chemical characterization of the soils used in the design of the bricks was carried out, using physico-chemical, mineralogical and geotechnical characterization, including X-ray diffractometer (XRD) using physico-chemical, mineralogical and geotechnical characterization, including X-ray diffractometer (XRD) analysis, Fourier transform infrared (FTIR) spectra and energy dispersive X-ray (EDX) analysis. The first results analysis, Fourier transform infrared (FTIR) spectra and energy dispersive X-ray (EDX) analysis. The first results reveal that the predominant minerals in oasis soils include ferrous clinochlore, muscovite, calcite and quartz, reveal that the predominant minerals in oasis soils include ferrous clinochlore, muscovite, calcite and quartz, which are mainly composed of silt and sand. Then, the eligibility of these soils for compressed earth brick (CEB) which are mainly composed of silt and sand. Then, the eligibility of these soils for compressed earth brick (CEB) construction was assessed, adhering to established guidelines for the identification of suitable soil types. In construction was assessed, adhering to established guidelines for the identification of suitable soil types. In addition, the thermal properties of the bricks were determined, finding that the use of corn straw fibers improves addition, the thermal properties of the bricks were determined, finding that the use of corn straw fibers improves the thermal performance of the bricks, and cement stabilization leads to an improvement in the bricks' methe thermal performance of the bricks, and cement stabilization leads to an improvement in the bricks' mechanical properties. chanical properties.
A very common hazard in Rwanda is represented by the instability of steep road cut slopes in lateritic soil. In its natural state, this material appears as a fine-grained weak and altered rock, generally in unsaturated conditions. Steep cut slopes made by this material could remain stable for a long time unless weathering weakens its mechanical behavior and heavy rainfall provokes a rapid landslide. This paper presents the results of an experimental investigation on the microstructural, petrophysical, and geotechnical properties of lateritic soil from a road cut slope located in Kabaya (Ngororero District-Rwanda), which was recently subjected to a landslide. The mechanical properties of the material are strictly related to the geological origin and history of the deposits, their formation environment, and weathering processes. These characteristics were revealed by peculiar microstructural features (micro-texture, porosity, and degree of alteration of original mineral paragenesis). The experimental investigations included identification and classification tests, direct shear tests on saturated samples, and swelling tests. This multidisciplinary approach provided insights into the relationship between geotechnical properties and the microstructural, petrophysical, and chemical characteristics of the altered rocks. This study showed how different levels of chemical alteration operated by weathering processes, in conjunction with brittle deformation related to the tectonic history, formed in the same site two shallow rock layers with similar macro-scale features and mechanical behaviors but markedly different microstructural and chemical properties. The innovative aspect of this research suggests an integrated multidisciplinary approach to considering microstructural aspects in addition to mechanical behavior in the slope stability analyses in lateritic soil. In particular, this study demonstrates the importance of such an approach since the failure mechanism is better explained if it is based on microstructural observations instead of considering the soil shear strength parameters only. This research helped to explain the formation of the landslide failure mechanism in a specific road cut slope, which could be assumed as representative of many other similar slopes subjected to landslides in Rwanda.
This study aims to preserve and improve the durability of earthen buildings in rural areas of Morocco, particularly in the Al Haouz province of the Marrakech-Safi region. In this paper, a survey was conducted to identify defects in earthen building materials and investigate factors that lead villagers to use cement over traditional earth-based construction methods. To propose solutions to these shortcomings, mineralogical, physicochemical, and geotechnical studies were conducted on four soils commonly used as rural building materials. Subsequently, some corrections were implemented in the treatment of raw materials and the production process of compressed earth blocks (CEBs), which were then subjected to mechanical, physical, and morphological characterization. The findings of this study revealed several building pathologies in earthen construction in this region, including ceiling water leaks, formulations made, and cracks. Research shows that the key factors influencing the durability of building materials are particle size distribution, mineralogy composition, moisture content, and con-struction process.