The paper aims to contribute to the preservation of high valuable historic masonry structures and historic urban landscapes through the combination of geotechnical, structural engineering. The main objective of the study is to conduct finite element analysis (FEA) of bearing saturated soft clay soil problems and induced structural failure mechanisms. This analysis is based on experimental and numerical studies using coupled PLAXIS 3D FE models. The paper presents a geotechnical analytical model for the measurement of stresses, deformations, and differential settlement of saturated clay soils under colossal stone/brick masonry structures. The study also discusses the behavior of soft clay soils under Qasr Yashbak through numerical analysis, which helps in understanding the studied behavior and the loss of soil-bearing capacity due to moisture content or ground water table (G.W.T) changes. The paper presents valuable insights into the behavior of soft clay soils under colossal stone/ brick masonry structures. The present study summarized specific details about the limitations and potential sources of error in Finite Element Modeling (FEM). Further field research and experimental analysis may be required to address these limitations and enhance the understanding of the studied soft clay soil behavior. The geotechnical problems in historic monuments and structures such as differential settlement are indeed important issues for their conservation since it may induce serious damages. It deserves more in-depth researches.
The object of the research is the behavior of axial compressed piles in the foundations on continuous permafrost soils under global warming. There is a degradation of permafrost soils at present. The permafrost layer is vertically divided into two parts: 1) the top, the active layer; 2) the bottom, the frozen mass. The active layer of soil thaws in summer and freezes in winter. Frozen soil behaves as a rock in winter and as a liquid mass on some soil thickness in summer. Accordingly, the surface forces acting on the pile surface in winter time disappear in the entire melted liquid soil layer in summer time. We considered the design of a pile by the condition of the first kind buckling (form) under axial compression. We took into account the conditions when the depth of the base thawing soil increases in the upper part of the pile at the stages of operation (in the summertime of the pile operation). In addition, we considered the calculation of the pile length under the same conditions at a given load on the pile at the stage of its design. To forecast the piles operating time in pile foundations or individual piles during global warming on the Earth, an algorithm for calculating pile length at the design stage is proposed. The paper provides a numerical example of calculating the pile operational life in the solid frozen soil of the foundation in an oil pipeline support.