共检索到 5

Debris flows are a dynamic and hazardous geological phenomenon, as by definition, debris flows are rapid, gravity-driven flows of saturated materials that often contain a mixture of water, rock, soil, and organic matter. They are highly destructive and occur in steep channels, posing a significant threat to infrastructure and human life. The dynamics of debris flows are complex due to their non-Newtonian behaviour and varying sediment-water interactions, making accurate modelling essential for risk mitigation and emergency planning. This paper reports and discusses the results of numerical simulations of back analyses aimed at studying the reconstruction of a real rapid debris flow. The selected test case is the event that occurred on 12 and 16 March 2021 along the Rio Sonno channel, a tributary of the Liri River, following the landslide event of Rendinara (Municipality of Morino, Abruzzo Region, Italy). There are significant flow sources in the area, fed by a highly fractured carbonaceous aquifer that extends immediately upslope of the detachment zone. The continuous flow influences the saturation level in the fine-grained sediments and favours the triggering of the debris flow. This phenomenon was simulated using the commercial RAMMS code, and the rheological model selected was Voellmy fluid friction. The modelling approaches used in this research are valid tools to estimate the volumes of materials involved in the flow-feeding process and for the purpose of possible mitigation works (debris flow-type dams, weirs, flow diversion, etc.).

期刊论文 2024-12-01 DOI: 10.3390/land13122078

PurposeThe primary goal of this research is to evaluate the seismic performance of Asla Hocine Primary School, a heritage school building in Annaba, Algeria, to prevent additional damage during future earthquakes in the region. The study aims to guide decision-makers in strengthening weak parts or elements in the building, implementing preventive measures and ultimately reducing earthquake disaster risk by mitigating vulnerability.Design/methodology/approachThe research employs the 3Muri software to model the seismic behavior and structural failures of the school's elements. An integrated multimodal pushover analysis is used to generate the non-linear capacity curve of the school to assess its seismic performance. The seismic demand is determined based on Algerian seismic regulations, with peak ground acceleration derived from a probabilistic seismic hazard analysis of Annaba city for return periods of 100, 200 and 500 years. The study develops three seismic scenarios to evaluate performance levels and expected damage probabilities.FindingsThe study reveals that the Asla Hocine Primary School faces a high risk of damage and potential collapse under the expected seismic hazard of the region. The analysis indicates variable resilience across different seismic return periods (100, 200 and 500 years), with the performance level degrading from life safety to collapse prevention and total collapse under increasing seismic intensity. This underscores the need for targeted structural analysis and potential retrofitting to enhance the building's seismic robustness.Research limitations/implicationsThe paper encouraged to account for soil-structure interaction in similar studies, as it can significantly affect the overall seismic performance of buildings. Furthermore, conducting out-of-plane analysis when necessary can offer valuable insights into the structural behavior of specific components.Practical implicationsThe insights provided by this study contribute vital data toward conservation efforts and risk mitigation strategies for heritage structures in seismic zones. The findings are intended to guide decision-makers in implementing preventive measures and strengthening weak parts or elements in the studied school building, ultimately reducing earthquake disaster risk by mitigating vulnerability.Originality/valueThis research offers a comprehensive framework for assessing the seismic vulnerability of heritage schools using detailed modeling and analysis. It highlights the importance of considering return periods of seismic events in assessing a building's seismic performance and provides a deeper understanding of the structural response to seismic stresses at both macrostructural and individual element levels. The study emphasizes the critical need for seismic risk assessment and targeted retrofitting to preserve cultural heritage assets and ensure their continued use.

期刊论文 2024-10-28 DOI: 10.1108/MMMS-07-2024-0180 ISSN: 1573-6105

Food security, a crucial issue for the development of humankind, is often severely constrained by water scarcity. As a globally recognized most advanced agricultural water-saving technology, drip irrigation under plastic mulch (DIPM) has played a significant role in grain production. However, a comprehensive review of the dual impacts of this practice in farmland remains lacking. This study has conducted an exhaustive review of DIPM research from 1999 to 2023 and employed CiteSpace software to perform a co-occurrence and clustering analysis of keywords in order to reveal research hotspots and trends. The results show that the attention to DIPM technology has increased annually and reached a peak in 2022. China leads in the number of publications in this field, reflecting its emphasis on agricultural water-saving technologies. This study critically discusses the dual impacts of DIPM on farmland. On the positive side, DIPM can improve soil temperature and moisture, enhance nutrient availability, promote water and nutrient absorption by roots, and increase the crop growth rate and yield while reducing evaporation and nitrogen loss, suppressing weed growth, decreasing herbicide usage, and lowering total greenhouse gas emissions. On the negative side, it will cause pollution from plastic mulch residues, damage the soil structure, have impacts on crop growth, and lead to increased clogging of drip irrigation systems, which will increase agricultural costs and energy consumption, hinder crop growth, hamper soil salinization management, and further reduce the groundwater level. The future development of DIPM technology requires optimization and advancement. Such strategies as mechanized residual-mulch recovery, biodegradable mulch substitution, aerated drip irrigation technology, and alternate irrigation are proposed to address existing issues in farmland triggered by DIPM. This review advocates for the active exploration of farming management practices superior to DIPM for future agricultural development. These practices could lead to higher yields, water-nitrogen efficiency, and lower environmental impact in agricultural development.

期刊论文 2024-08-01 DOI: 10.3390/agronomy14081752

Sudden leaks often occur when constructing shield tunnels within saturated sandy cobble strata. Therefore, it is important to examine the reasons for water seepage and understand the mechanisms behind such problems. This paper presents a study that combines laser scanning technology with the Python programming language to create software for monitoring tunnel deformation. The software was employed in a practical subway tunnel scenario, successfully acquiring deformation data pertaining to the tunnel's structural segment through the analysis of point cloud data from the tunnel lining. Furthermore, the seepage-stress coupling theory was employed to establish a three-dimensional model of shield tunnel excavation, interlinking groundwater and stratigraphic factors with the sequence of shield tunnel excavation. The origins and mechanisms of water damage resulting from seepage and leakage are explicated through an examination of the seepage field, displacement field, and deformation of the tunnel structure pre- and post-excavation. Additionally, on-site monitoring data is considered. The mechanism of tunnel leakage is outlined as follows: Tunnel excavation completion induces alterations in the seepage field, leading to an accelerated inflow of groundwater into the soil beneath the tube sheet during shield excavation. The tube sheet of the shield tunnel, composed of sand and gravel layers, experiences vertical elliptical deformation that exacerbates shifts in the displacement field due to tunnel deformation's inception and progression. Excessive tube sheet deformation triggers fracture cracks, ultimately engendering the creation of seepage channels. These channels, in turn, foster seepage and water damage. The results of this paper provide a reference for preventing and remedying water infiltration and leakage in shield tunnels constructed of sandy cobble strata.

期刊论文 2024-07-01 DOI: 10.1016/j.tust.2024.105784 ISSN: 0886-7798

Little was known about the leaching behavior of potentially toxic elements (PTEs) from soils under the interaction between freeze-thaw (F-T) cycle and the solutions of varying pH values. In this study, PTEs leachability from soils before and after F-T tests was evaluated using toxicity characteristics leaching procedure (TCLP) test. The microstructure and mineralogical evolution of soil mineral particles were conducted using pores (particles) and cracks analysis system (PCAS) and PHREEQC. The results indicated that during 30 F-T cycles, the maximum leaching concentrations of PTEs were 0.22 mg/L for As, 0.61 mg/L for Cd, 2.46 mg/L for Cu, 3.08 mg/L for Mn, 29.36 mg/L for Pb and 8.07 mg/L for Zn, respectively. Under the coupled effects of F-T cycle and acidification, the porosity of soil particles increased by 4.79%, as confirmed by the microstructure damage caused by the evolution of pores and cracks. The anisotropy of soil particles increased under F-T effects, whereas that decreased under the coupled effects of F-T cycle and acidification. The results from SEM-EDS, PCAS quantification and PHREEQC modeling indicated that the release mechanism of PTEs was not only associated with the microstructure change in mineral particles, but also affected by protonation, as well as the dissolution and precipitation of minerals. Overall, these results would provide an important reference for soil remediation assessments in seasonal frozen areas.

期刊论文 2024-04-01 DOI: 10.1007/s11771-024-5603-x ISSN: 2095-2899
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页