Resonant scattering of the lunar sodium exosphere was measured from the lunar orbiter SELENE (Kaguya) from December 2008 to June 2009. Variations in line-of-sight integrated intensity measured on the night-side hemisphere of the Moon could be described as a spherical symmetric distribution of the sodium exosphere with a temperature of 2400-6000 K. Average surface density of sodium atoms in February is well above that in the other months by about 30%. A clear variation in surface density related to the Moon's passage across the Earth's magnetotail could not be seen, although sodium density gradually decreased (by 20 +/- 8%) during periods from the first through the last quarter of two lunar cycles. These results suggest that the supra-thermal components of the sodium exosphere are not mainly produced by classical sputtering of solar wind. The variation in sodium density (which depends on lunar-phase angle) is possibly explained by the presence of an inhomogeneous source distribution of photon-stimulated desorption (PSD) on the surface. (c) 2010 Elsevier Ltd. All rights reserved.
The first successful observations of resonant scattering emission from the lunar sodium exosphere were made from the lunar orbiter SELENE (Kaguya) using TVIS instruments during the period 17-19 December, 2008. The emission intensity of the NaD-line decreased by 12 +/- 6%, with an average value of 5.4 kR (kilorayleighs) in this period, which was preceded, by I day, by enhancement of the solar proton flux associated with a corotating interaction region. The results suggest that solar wind particles foster the diffusion of sodium atoms or ions in the lunar regolith up to the surface and that the time scale of the diffusion is a few tens of hours. The declining activity of the Geminid meteor shower is also one possible explanation for the decreasing sodium exosphere.