共检索到 2

Forest growth in tropical regions is regulated in part by climatic factors, such as precipitation and temperature, and by soil factors, such as nutrient availability and water storage capacity. We examined a decade of growth data from Eucalyptus clonal plantations from over 113,000 forest inventory plots across a 10 million-ha portion of Mato Grosso do Sul in southwestern Brazil. From this full dataset, three subsets were screened: 71,000 plots to characterize growth and yield across water table depth classes, 17,000 plots to build generalized models, and 50,000 plots for clone-based analyses. Average precipitation varied little across the region (1150 to 1270 mm yr(-1)), but water table depth ranged from less than 10 m to over 100 m. Where the water table was within 10 m of the surface, about 20 % of the total water used by trees came from this saturated zone. Water tables deeper than 50 m contributed very little to tree water use. Sites with a water table within 10 m averaged 47 m(3) ha(-1) yr(-1) in stem growth (mean annual increment, MAI) across a full rotation, compared to less than 37 m(3) ha(-1) yr(-1) for sites with water tables deeper than 50 m. Drought-induced canopy damage rose from 7 % to 30 % along the water tables depth gradient, while tree mortality rose nearly fourfold. The optimal stocking level was about 1360 trees ha(-1) where water tables were accessible, declining to 1080 trees ha(-1) where they were not. Among the 15 most planted Eucalyptus clones, increases in MAI from the lowest to highest water table depths ranged from + 4.8 to + 16.8 m(3) ha(-1) yr(-1) , reflecting significant genotype-environment interactions. On average, MAI decreased by 0.8 m(3) ha(-1) yr(-1) (ranging from 0.4 to 1.4) for every 10 m increase in water table depth. Similarly, the Site Index at base age 7 years declined from 31 m to 27 m, with an average reduction of 0.25 m per 10 m increase in water table depth. Physiographic modeling of water table depths offers useful information for forest management practices like forest inventory and planning, clonal allocation, optimized planting densities, fertilization strategies, coppice techniques, and other landscape-specific strategies like tree breeding zones.

期刊论文 2025-08-01 DOI: 10.1016/j.foreco.2025.122771 ISSN: 0378-1127

Monitoring and modelling surface deformation are crucial components of understanding the freeze-thaw process and preventing disasters in permafrost regions. However, previous methods had limitations that inhibited the interpretation of freeze-thaw deformation, such as a lack of physical meaning, an inability to reflect the physical freeze-thaw process and consideration of only a single external factor's impact on permafrost deformation. This study proposes an improved degree-day model (IDM) for quantitatively isolating surface deformation using interferometric synthetic aperture radar (InSAR) technology over permafrost. We considered the effect of soil moisture variation on permafrost deformation and incorporated interannual variation in the freeze-thaw process due to climate change. By applying small baseline subset (SBAS) technology to Sentinel-1 InSAR measurements over the Wudaoliang permafrost region on the Qinghai-Tibet Plateau from 2018 to 2019, we estimated long-term and seasonal permafrost deformation. The reliability of InSAR results was validated using in situ measurements, with root mean square errors (RMSEs) less than 10 mm. The results showed that the average linear deformation rates in 2018 and 2019 were -3.8 mm a-1 and -11.0 mm a-1, respectively, and the maximum seasonal deformations were 15.7 mm and 13.2 mm, respectively. Compared with the original degree-day model (ODM), the method used in this study produced smaller residual deformations of 6.9 mm and 6.4 mm, highlighting its ability to improve a quantitative description of permafrost deformation.

期刊论文 2024-12-16 DOI: 10.1080/01431161.2024.2406033 ISSN: 0143-1161
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页