This study explores a novel stabilization technique combining Persian gum (PG), an eco-friendly biopolymer, and glass fiber (GF) to enhance the strength and durability of fine-grained soils under freeze-thaw (F-T) cycles. Specimens were prepared at maximum dry density (MDD) with varying PG and GF contents, cured for 0, 7, or 14 days, and subjected to 0, 5, 7, or 10 F-T cycles. Tests included Standard Proctor compaction, Scanning Electron Microscopy (SEM), Unconfined Compressive Strength (UCS), and Direct Shear (DS). Results demonstrated that GF significantly improved durability, ductility, and strength by enhancing interparticle interaction and friction angle. The results indicated that at an optimum GF content of 1%, UCS and E-5(0) increased by up to 35%. Also, after 10 F-T cycles, UCS decreased by 46% for untreated soil and 36% for treated soil. PG enhanced cohesion through interparticle bonding, which was curing-time-dependent. Specimens with 2.5% PG (optimum content) showed a 133% UCS increase after 14 days of curing but a 9% reduction after 5 F-T cycles, with 70% of total UCS loss occurring in the first 5 cycles. The tests indicated that formation of large and stable soil-PG-GF matrix with improved rigidity, strength, and F-T resistance. The results demonstrated that the suggested soil stabilization method, which utilizes low-cost, eco-friendly materials, was effective.