At 4:17 am (1:17 UTC) on Feb. 6, 2023, an earthquake with Mw=7.8 struck near Pazarc & imath;k City in south-central Turkey, followed by a 7.5 Mw event about 9 h later. The subsequent earthquakes can cause severe damage which might not be the case for single earthquakes. In this study, a series of shake table tests on level ground with a sloping base model were conducted to investigate the effects of subsequent liquefactions on two 2 x 2 pile groups with a minor fixity in the caps. Adequate time intervals for complete dissipation of excess pore water pressure in the liquefiable layer were permitted at the end of each shaking. For this purpose, the free field soil and the piles were sufficiently instrumented to measure various parameters during and after the shakings. In this paper, the results of one of the shakings are reported and discussed in detail, and the results of other shakings are compared. The reported results contain time histories of acceleration, displacement, pore water pressure, bending moment, shear force, and lateral pressure on the piles. The ground settlements due to subsequent earthquakes are also measured and reported. The findings reveal that in a level ground liquefiable layer overlying a sloping base, lateral spreading may also occur and affect the piles behaviour especially in subsequent earthquakes. In addition, a practical relationship is proposed from the experimental results to estimate the residual shear strength of the liquefied soil.
Structural damages occurred during any earthquake arise not only from structural design flaw but also from the variability of sub-base soil behavior and the foundation system. For this reason, structure-soil-pile interaction has an important place in evaluating the behavior of a structure under dynamic effects. Bored pile application, which is one of the deep foundation systems, is a widely used method in the world to transfer the loads coming from the structure to the ground safely in problematic grounds. For this reason, in pile foundation system designs, how bored pile foundation systems will affect the structural design under earthquake loads is considered an important issue. In particular, how diagonally braced steel structures with piled raft foundation systems will behave under earthquake effects has been evaluated as a subject that needs to be examined. For this reason, this situation was evaluated as the main purpose of this study. The effect of the bored pile systems designed in different orientations on the behavior of diagonally braced steel structures during an earthquake under kinematic and inertial effects was investigated in detail within the scope of this study. Numerical analyses, based on data from shake table experiments on a scaled superstructure, examine various pile design scenarios. Experimental base shear force measurements informed the development of numerical scenarios, which varied pile lengths and inter-pile distances while maintaining constant pile diameters. This study analyzed the kinematic and inertial effects on the piles, offering insights into their structural behavior under seismic conditions. The increase in pile length and the increase in the distance between the piles caused a significant increase in the bending moment and shear force, which have an important place in pile design.
This paper investigates the dynamic response of a model pile-soil-bridge system subjected to seismic loading using a finite element model (FEM) developed in OpenSees. The numerical model is validated against shake table test data from a companion experimental study, which tested a piles-bridge model fabricated from organic glass. The bridge model comprised four piers, each supported by two-by-two pile groups, with edge piers featuring 60 x 60 mm rubber pads between the pier and deck. Two earthquake ground motions, El Centro and Tianjin, were applied at three intensity levels. The calculated and measured responses show good agreement. The validated FEM reveals that the El Centro earthquake typically induces higher acceleration and moment responses in structural elements compared to the Tianjin earthquake, while the Tianjin earthquake results in greater displacement responses. These findings highlight the impact of earthquake wave characteristics, such as predominant period, on the bridge system's response. Furthermore, the bending moments at the pier top for edge piers remain relatively consistent across different earthquake motions and intensity levels, indicating the role of rubber pads in mitigating seismic forces in the piers.
Microbial-induced calcium carbonate precipitation (MICP) is an emerging in situ grouting technology for sand ground improvement, slope stability, and subgrade reinforcement, featuring rapid implementation and low energy consumption. The precipitated calcium carbonate crystals can rapidly fill and cement sand particles so as to form a new soil structure that effectively reduces liquefaction sensitivity and dynamic damage. The centrifuge shake table test is an effective method for simulating liquefaction of sandy soil layers under shear wave excitation. Many studies have been conducted on this topic in recent years. However, the study on dynamic response, especially the liquefaction resistance of MICP-cemented sands by centrifuge shake table tests, is rare. In order to investigate the cementation effect of microbial treatment, centrifuge shake table tests were performed on two models, i.e., untreated and MICP cemented sand model. The test results indicated that, compared with untreated sand model, the liquefaction resistance of the MICP model was significantly improved in terms of acceleration response, shear stiffness, stress-strain relationship, and ground surface settlement. This study contributes to a better understanding of the mechanical law in the liquefaction process and enriches the engineering application of microbial grouting treatment of sand foundation prone to liquefaction.
This paper presents the results of centrifuge tests performed on reinforced concrete (RC) pile-supported simply supported girder bridge models in non-liquefiable (unsaturated) and liquefiable (saturated) slightly inclined sandy soil sites. The main objectives were to investigate the dynamic response characteristics of RC pile-supported simply supported girder bridges in non-liquefiable and liquefiable soils, examine the mechanisms causing beam collapse and damage to pile-pier yielding, and verify the effectiveness of cable restrainers. The centrifuge tests were conducted in non-liquefiable and liquefiable sites, each consisting of a three-span RC pile-supported simply supported girder bridge model and a control model with a superstructure equipped with a cable restrainer. First, the dynamic characteristic parameters of the soil and structural models in both sites were obtained. Subsequently, the conventional test results were interpreted, including the excess pore pressure ratio, acceleration, and displacement. The analysis included examining the moment demand of the pile-pier structure and seismic damage mechanisms. Finally, a correlation analysis was performed to evaluate the inertial and kinematic effects on the moment demand of the pile-pier structure. The results show that the acceleration response after soil liquefaction at the inclined sites is amplified unilaterally in the downslope direction and spikes appear. The liquefiable foundation is displaced to the downslope. However, major earthquake induces foundation displacement, and liquefaction leads to a longer duration and more significant soil displacement. The installation of cable restraints significantly increased the acceleration response of the superstructure. Still, it effectively reduced the relative displacement of the superstructure and prevented the beam from collapsing. Soil liquefaction decreases the bending moment of the pile-pier structure, and the cable restrainer causes the damage mode of the pile-pier structure to shift from the pile head to the pier bottom. In the non-liquefiable scenario, the bending moment demand at the pile head has a more significant influence on the inertial effect. Additionally, using the cable restrainer system can increase the kinematic effect after liquefaction. The test results can be used to validate numerical models and provide a reference for pile foundation design.
Rubble mound (RM) breakwaters are coastal structures constructed to provide tranquil condition around the port areas. After past earthquakes such as the 2004 Indian Ocean earthquake and the 2011 Great East Japan earthquake, it was found that stability of breakwater not only depends on the wave action but seismic motions also play an important role for this. Very limited studies are available for the stability evaluation of RM Breakwater under earthquake motions by conducting physical model tests. To the end, an attempt has been made in the study to evaluate the stability of RM breakwater subjected to earthquake loadings. A series of shaking table tests conducted to evaluate the seismic behaviour of the RM breakwater. A prototype RM breakwater is modelled on two layers of seabed foundation soil. Different amplitudes of sinusoidal seismic motions (foreshocks and main shock) are provided at the base of the model. Later, the breakwater stability was evaluated for real earthquake motions. Various parameters such as settlement, horizontal displacement, acceleration-time histories and excess pore water pressure were measured during the tests. Deformation pattern was also studied by photos and videos captured during the tests. During the mainshock, the crown wall settled by 111 % more comparable to second foreshock; and the structure laterally displaced by more than 200 % comparable with first foreshock. The peak acceleration of input wave amplified while it was travelling from bottom to the crest of breakwater. The excess pore water pressure was maximum beneath the rubble mound, in loose sand and it was five times more during the mainshock compared to first foreshock. Due to loss in bearing capacity of foundation soil, the breakwater collapsed. Also, the effects like rolling down of armor units, densification and slumping of core material, shear deformation of breakwater body were observed during the main shock. Thus, the breakwater failed during the mainshock. Numerical analyses were also executed for both sinusoidal and real earthquake motions to make clear the mechanism of the breakwater behaviour subjected to the earthquake loadings.