共检索到 2

This study focused on synthesizing polyvinyl alcohol (PVA) utilizing glutaraldehyde (GA) as a crosslinking agent and silicon dioxide (SiO2) nanopowder with titanium dioxide (TiO2) nanopowder to reduce or prevent the hydrophilic property of PVA. Integrating SiO2 and TiO2 into the PVA boosted the hydrophobicity, thermal properties, and self-cleaning of the PVA film. The characteristic properties of PVA/GA, PVA/SiO2/GA, and PVA/SiO2/TiO2/GA nanocomposites polymer membranes were investigated by gel content, swelling capacity, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction patterns (XRD), scanning electron microscope (SEM), thermal gravimetric analysis (TGA), and contact angle. The resulting PVA/5%SiO2/1%TiO2/GA nanocomposite exhibits much better physical properties than PVA/GA hydrogel (water absorbency from 3.1 g/g to 0.07 g/g and contact angel from 0 degrees to 125 degrees). In addition, the nanocomposite retains very low swelling properties. These prepared nanocomposites are promising in a variety of applications such as sand soil stabilizers, construction, and building works where they exhibit excellent water resistance performance. This study introduces a novel approach for creating hydrophobic polymeric membranes from hydrophilic polymeric materials to stabilize sandy soil effectively.

期刊论文 2025-04-08 DOI: 10.3390/molecules30081664

In outdoor environment, the exterior walls surface of buildings always suffers from damages caused by ultraviolet radiations, temperature variation, abrasion and erosion phenomenon, dust pollution, and microbial adhesion: Thereby reducing their durability over time. In order to overcome these obstacles, the superhydrophobic coatings can be an advantageous solution to ensure long-term stable use by improving the exterior concrete walls durability. In this line, a fluorine-free water-repellent coating was developed through sol-gel method and successfully applied to concrete substrates by dip-coating technique. The coating was formulated with low surface energy polydimethylsiloxane (PDMS) and polymeric silica (PS) to simultaneously modify the microstructure and chemical properties of concrete substrate surface. The coated concrete substrate showed super-hydrophobicity with high water contact angle (WCA) over than 150 degrees. Besides, the self-cleaning property, mechanical robustness, stability under UV irradiations, resistance to temperature and humidity were investigated. The results indicated that the coated concrete substrate cannot be soiled by dust and can resist over than 300 cycles of abrasion test. It also presents resistance to temperature of 45 degrees C associated with a humidity of 80% during 720 hours and showed excellent resistance to prolonged exposure to UV irradiations during 1440 hours. Natural out-door aging tests have shown that the superhydrophobic coating is weather resistant.

期刊论文 2024-04-26 DOI: 10.1016/j.conbuildmat.2024.136086 ISSN: 0950-0618
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页