共检索到 10

This study examines the failure mechanisms of offshore caisson-type composite breakwaters (OCCBs) under seismic loading through 1g shaking table model tests, comparing cases with and without remediation measures against seabed soil liquefaction. For this purpose, several countermeasures are implemented, comprising wraparound geogrid inclusions within the rubble mound layer, stone columns and compacted improvement zones in the seabed soil, all aimed at enhancing the seismic resilience and stability of OCCBs. Six physical model tests are conducted to evaluate the effectiveness of the applied remediation measures in minimizing liquefactioninduced deformations of OCCBs, including settlement, lateral movement, and tilting. Experimental findings indicate that the caisson settlement is primarily caused by the lateral flow of the foundation soil and the rubble mound layer. The combined use of stone columns and wraparound geogrid reinforcements efficiently mitigates this lateral flow. Notably, remediating just 2.8 % of the liquefiable seabed soil with stone columns decreases OCCB settlement and tilting by 45.4 % and 31 %, respectively, compared to the non-remediated model. Additionally, incorporating wraparound geogrid reinforcements within the rubble mound layer results in even further reductions of settlement and tilting by 90.6 % and 91.3 %, respectively. This research offers valuable insights for developing effective countermeasures to mitigate seismic-induced damage to OCCBs seated on liquefiable seabed soils.

期刊论文 2025-06-01 DOI: 10.1016/j.oceaneng.2025.121035 ISSN: 0029-8018

Here, a seismic-response analysis model was proposed for evaluating the nonlinear seismic response of a pile-supported bridge pier under frozen and thawed soil conditions. The effect of a seasonally frozen soil layer on the seismic vulnerability of a pile-supported bridge pier was evaluated based on reliability theory. Although the frozen soil layer inhibited the seismic response of the ground surface to a certain extent, it exacerbated the acceleration response at the bridge pier top owing to the low radiation damping effect of the frozen soil layer. Furthermore, the frozen soil layer reduced the lateral displacement of the bridge pier top relative to the ground surface by approximately 80%, thereby preventing damage caused by earthquakes, such as falling girders. Compared to the thawed state of the ground surface, the bending moment of the bridge pier in frozen ground increases. However, the bending moment of the pile foundation in frozen ground decreases, thereby lessening the seismic vulnerability of the bridge pile foundation. The results of this can provide a reference for the seismic response analysis and seismic risk assessment of pile-supported bridges in seasonally frozen regions.

期刊论文 2025-04-01 DOI: 10.1007/s11803-025-2319-3 ISSN: 1671-3664

The seismic response characteristics of the Yellow River terrace are crucial, as it is one of the key human activity areas. Seismic response characteristics of Yellow River terrace stations in Ningxia were analyzed using strong-motion earthquake records from seismic observations in the Loess Plateau and corresponding station data, employing the Horizontal-to-Vertical Velocity Response Spectrum Ratio method. The seismic vulnerability coefficient (Kg) was computed, and the bedrock depth was estimated. The results indicate that the spectral ratio curves of the Yellow River terrace can be classified into three types: single-peak, multi-peak, and ambiguous-peak types. The predominant period of the terraces ranges from 0.12 to 1.22 s, and the amplification factor ranges from 2.87 to 10.29. The calculated Kg values range from 2.09 to 63.24, and the bedrock depth ranges from 10.68 to 168.11 m. The site's predominant period, amplification factor, high Kg values, and deep bedrock depths can significantly impact seismic design, potentially leading to greater damage during earthquakes. Based on the predominant period, Kg values, and bedrock depth, the seismic vulnerability of Yinchuan is assessed to be high.

期刊论文 2025-03-01 DOI: 10.1007/s12145-025-01788-y ISSN: 1865-0473

In order to further study the dynamic response and damage status of the subway station structure and promote the development of the TOD (transit-oriented development) mode structure system, this paper proposes a calibration method for the seismic performance index limit of the subway station complex structure in TOD mode. Taking a practical project in the Beijing city sub-center station integrated transport hub as the research background, the nonlinear analysis model of soil-structure interaction under different site types is established. Firstly, the limit value of the interstory drift ratio is determined by the pushover loading method of the inverted triangular distributed load for the three-dimensional numerical model. Secondly, different types of seismic waves are selected to analyze the seismic vulnerability of the simplified two-dimensional numerical model, and the exceedance probability of different damage states of the structure is quantitatively analyzed. By analyzing the pushover curve, the maximum interstory drift ratio limits corresponding to the five damage states of the subway station complex structure are 0.14%, 0.32%, 0.66%, and 1.12%, respectively. Under different site types and different types of seismic waves, the seismic response law of subway station structures in TOD mode is different. Using different types of ground motion as the input, the mean and discreteness of different IDA curve clusters are quite different. The near-field pulse-type ground motion has a greater impact on the ground motion of the structural system under the Class II site, and the far-field long-period ground motion has a greater impact on the structure under the Class III site. Damage decreases with the increase in the equivalent shear wave velocity of the site, that is, the harder the site's soil is, the less susceptible the structural system is to damage by underground motion. The established seismic vulnerability curve and seismic damage probability table can effectively evaluate the seismic performance of subway station complex structure in TOD mode. The research results can provide a valuable reference for the seismic performance evaluation of similar underground structures.

期刊论文 2025-03-01 DOI: 10.3390/buildings15050699

Many grain silos in earthquake intensity areas are at significant risk of post-seismic damage, which compromise their functionality and pose an enormous challenge to post-disaster rescue and social stability. However, the current specifications based on fixed-base foundations are not fit for the seismic design of silos in soft soil areas. Therefore, it is of great practical significance to study the seismic disaster prevention of siloes considering soilstructure interaction (SSI) for food security and post-disaster supply. In this research, a column-bearing silo in a soft soil area is taken as the research object. The relative displacement response, elastic-plastic development and storage lateral pressure of the structure under different ground motions are studied in detail when the state of filling storage material is empty, half-filled and fully filled. Compared with the fixed-base model, the mechanism of the ground motion response and the influence of the SSI effects on the dynamic characteristics of the columnbearing silo structure under different storage conditions are revealed. In addition, structural vulnerability analysis is carried out with the incremental dynamic analysis (IDA) method. Finally, the structural damage probability with and without SSI effects under different storage conditions is further discussed. The results demonstrate that the SSI effects have a certain damping effect on the column-bearing silo. The amount of storage material changes the failure probability of the structure. Moreover, full-silo is the most dangerous condition, indicating that the filling state of storage material affects the stiffness degradation. This study provides theoretical insight to the influence of the SSI effect on the seismic resilience of structures.

期刊论文 2024-12-01 DOI: 10.1016/j.soildyn.2024.108956 ISSN: 0267-7261

Cliff-attached structures are structures attached to slopes and connected tightly, which is particularly complex to analyze due to the foundations' unequal grounding and the lateral stiffness' irregularity. In rare earthquakes, seismic waves are usually obliquely incident on the foundation at a certain angle. Therefore, it is not appropriate to consider only seismic waves' vertical incidence, and it is necessary to consider multi-angle oblique incidence. In this paper, based on the theory of viscous-spring artificial boundary and the principle of equivalent nodes at the interface of oblique incidence of ground shaking P-waves, and combined with the dynamic properties related to Buckling-Restrained Brace, the numerical models of slopes and two kinds of cliff-attached structures considering the slope amplification effect and soil-structure interaction are established. The dynamic response of the obliquely incident seismic waves under the action of the cliff-attached vibration reduction structure is studied in depth, and the additional effective damping ratios of the nonlinear energy-dissipated units based on the deformation energy are compared and analyzed. It is shown that under the four oblique incidence angles of incidence (compression waves in the vertical plane) studied in this paper, the seismic dynamic response and damage degree peaked at an angle of incidence of 60 degrees, with a tendency to increase and then decrease with increasing angles of incidence. The ability of an energy-dissipating vibration reduction device to change structural vibration characteristics decreases with an increase in incidence angle. The difference between the total strain energy of the structure in the X-direction (Transverse slope direction) and Y-direction (Down-slope direction) and the total energy dissipation of the dissipative components is obvious, with the X-direction being about 10 times that of the Y-direction.

期刊论文 2024-11-01 DOI: 10.3390/buildings14113488

Evaluating the seismic vulnerability of facades of historic masonry buildings is essential not only for their significant historical and heritage value, but also to evaluate the safety of this type of construction. This work applies a simplified methodology to assess the seismic vulnerability of the facade of masonry buildings in the historic center of Morelia, Michoac & aacute;n, M & eacute;xico. The historic center of Morelia was declared a World Cultural Heritage Site by UNESCO in 1991. On the facades, there is ornamentation with sculptural and vegetal decorative elements. The methodology involved conducting visual inspections to identify the location, type of structure, construction materials, doors, windows, balconies, cornices, ironwork, pediments, niches, and sculptures, among other characteristic elements of colonial architecture. The seismic demands were determined specifically for the city's historic center based on a recent seismic hazard assessment of Morelia. Based on the methodology and the compiled database, characterized vulnerability indices were defined for the different damage scenarios that buildings may present. Results indicate that earthquakes with intensities greater than VIII on the Modified Mercalli scale risk collapsing heritage masonry buildings' facades.

期刊论文 2024-10-01 DOI: 10.3390/buildings14103148

Seismic vulnerability modeling is critical to seismic risk assessment, enabling decision-makers to identify and prioritize areas and structures most susceptible to earthquake damage. The use of machine learning (ML) algorithms and Geographic Information Systems (GIS) has surfaced as an encouraging approach for seismic vulnerability modeling due to their ability to integrate and analyze large volumes of data. In this abstract, we present a novel approach to seismic vulnerability modeling that leverages the power of ML and GIS. Using Artificial Neural Networks and Random Forest algorithms, the damage intensity values for an earthquake event with the help of various factors like the location, depth, land cover, distance from major roads, rivers, soil type, population density, and distance from fault lines were predicted. The resulting damage intensity values were classified, keeping the Modified Mercalli Intensity Scale as a reference. The ANN and Random Forest algorithms performed very well in this study, and both the models' accuracy was above 95% for training and testing data. Utilizing the damage intensity values map, the global seismic hazard map, and other socio-physiological parameters were utilized to generate an exposure grid zonation map. Applying this approach to a case study in the Satara district of Maharashtra highlights the model's effectiveness in identifying vulnerable buildings and improving seismic risk assessment. This approach provides a valuable tool for disaster management and urban planning decision-makers to develop effective mitigation strategies, prioritize resources, and improve overall disaster resilience.

期刊论文 2024-06-01 ISSN: 0963-0651

Seismic vulnerability modeling plays a crucial role in seismic risk assessment, aiding decision-makers in pinpointing areas and structures most prone to earthquake damage. While machine learning (ML) algorithms and Geographic Information Systems (GIS) have emerged as promising tools for seismic vulnerability modeling, there remains a notable gap in comprehensive geospatial studies focused on India. Previous studies in seismic vulnerability modeling have primarily focused on specific regions or countries, often overlooking the unique challenges and characteristics of India. In this study, we introduce a novel approach to seismic vulnerability modeling, leveraging ML and GIS to address these gaps. Employing Artificial Neural Networks (ANN) and Random Forest algorithms, we predict damage intensity values for earthquake events based on various factors such as location, depth, land cover, proximity to major roads, rivers, soil type, population density, and distance from fault lines. A case study in the Satara district of Maharashtra underscores the effectiveness of our model in identifying vulnerable buildings and enhancing seismic risk assessment at a local level. This innovative approach not only fills the gap in existing research by providing predictive modeling for seismic damage intensity but also offers a valuable tool for disaster management and urban planning decision-makers.

期刊论文 2024-05-15 DOI: 10.32604/rig.2024.051788 ISSN: 1260-5875

This study discusses the effects of local sites and hazard amplification on the seismic vulnerability assessment of existing masonry buildings. In this context, a rapid seismic evaluation procedure was implemented on an old masonry building stock in the historical center Galata, located in Istanbul, to determine the seismic risk priority of the built heritage. Damage scenarios were generated for all soil classes, different moment magnitudes, and source-to-site distances to obtain more accurate results for the seismic vulnerability assessment of the studied building stock. Consequently, damage distributions estimated under nine different scenarios with/without site effects were compared and illustrated in maps to discuss changes in vulnerability owing to amplification effects. In this study, by re-examining the rapid seismic evaluation procedure by including geo-hazard-based assessment, the importance of site effects on the vulnerability and risk assessment of built heritage was underlined. The proposed framework integrating field data and local site effects is believed to advance the current applications for vulnerability assessment of masonry buildings and provide an improvement in the application of rapid seismic assessment procedures with more reliable results.

期刊论文 2024-02-01 DOI: 10.1007/s11709-024-0982-5 ISSN: 2095-2430
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页